Home
Class 12
MATHS
If 1+sintheta+sin^2theta+sin^3theta+..to...

If `1+sintheta+sin^2theta+sin^3theta+..to oo=4+2sqrt3 ` 0<`theta`<`pi`, `theta!=pi/2` then

A

`(pi)/(6)`

B

`(pi)/(3)`

C

`(pi)/(3) "or" (pi)/(6)`

D

`(pi)/(3) "or" (2pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(1 + \sin \theta + \sin^2 \theta + \sin^3 \theta + \ldots = 4 + 2\sqrt{3}\), we can follow these steps: ### Step 1: Identify the series The left-hand side is an infinite geometric series where the first term \(a = 1\) and the common ratio \(r = \sin \theta\). ### Step 2: Use the formula for the sum of an infinite geometric series The sum \(S\) of an infinite geometric series can be calculated using the formula: \[ S = \frac{a}{1 - r} \] Substituting the values we have: \[ S = \frac{1}{1 - \sin \theta} \] ### Step 3: Set the equation We know from the problem statement that this sum is equal to \(4 + 2\sqrt{3}\): \[ \frac{1}{1 - \sin \theta} = 4 + 2\sqrt{3} \] ### Step 4: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ 1 = (4 + 2\sqrt{3})(1 - \sin \theta) \] ### Step 5: Expand the right-hand side Expanding the right-hand side: \[ 1 = (4 + 2\sqrt{3}) - (4 + 2\sqrt{3})\sin \theta \] ### Step 6: Rearrange the equation Rearranging gives: \[ (4 + 2\sqrt{3})\sin \theta = (4 + 2\sqrt{3}) - 1 \] \[ (4 + 2\sqrt{3})\sin \theta = 3 + 2\sqrt{3} \] ### Step 7: Solve for \(\sin \theta\) Dividing both sides by \(4 + 2\sqrt{3}\): \[ \sin \theta = \frac{3 + 2\sqrt{3}}{4 + 2\sqrt{3}} \] ### Step 8: Rationalize the denominator To simplify, we can multiply the numerator and the denominator by the conjugate of the denominator: \[ \sin \theta = \frac{(3 + 2\sqrt{3})(4 - 2\sqrt{3})}{(4 + 2\sqrt{3})(4 - 2\sqrt{3})} \] Calculating the denominator: \[ (4 + 2\sqrt{3})(4 - 2\sqrt{3}) = 16 - 12 = 4 \] Calculating the numerator: \[ (3 + 2\sqrt{3})(4 - 2\sqrt{3}) = 12 - 6\sqrt{3} + 8\sqrt{3} - 12 = 2\sqrt{3} \] Thus, \[ \sin \theta = \frac{2\sqrt{3}}{4} = \frac{\sqrt{3}}{2} \] ### Step 9: Find \(\theta\) The values of \(\theta\) for which \(\sin \theta = \frac{\sqrt{3}}{2}\) in the interval \(0 < \theta < \pi\) are: \[ \theta = \frac{\pi}{3} \quad \text{and} \quad \theta = \frac{2\pi}{3} \] ### Final Answer Thus, the values of \(\theta\) are: \[ \theta = \frac{\pi}{3} \quad \text{or} \quad \theta = \frac{2\pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If 1 + sintheta + sin^2theta + sin^3theta +.. oo = 4 + 2sqrt3, 0 lt theta lt pi, theta != pi/2 then

Solve 4sintheta sin2thetasin4theta=sin3theta

If sintheta+sin^2theta+sin^3theta=1, then prove that cos^6theta-4cos^4theta+8cos^2theta=4

Prove that: sin theta- 1/2 sin 2 theta+1/3 sin 3theta-…to oo = theta/2

Find the sum sintheta+x sin 2theta+x^2sin 3theta+… to oo

If sin theta_1 + sintheta_2 + sin theta_3 = 3 then find the value of cos theta_1 + cos theta_2 + cos theta_3.

Statement-1: The number of |cosx | = sinx in [0,4pi] is 4 Statement-2: The equation sin^(2)x -1/sqrt(2) (sqrt(3)+1) sinx + sqrt(3)/4=0 has two roots in [0,pi/2] . Statement-3:The number of solutions of sin theta + sin 5theta= sin 3theta, theta in [0,pi] is 5.

Find the sum of the series sintheta- (sin2theta)/(2!)+(sin3theta)/(3!)-… to oo

Sum to terms of the series sintheta sin2theta + sin2thetasin3theta + sin3theta sin4theta +..... is equal to

Solution set of 4 sintheta*costheta-2 costheta-2sqrt3 sin theta+sqrt3 = 0 in the interval (0, 2 pi) is

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Exercise
  1. If (1+tantheta)(1+tanphi)=2, then theta + phi=

    Text Solution

    |

  2. The general solution of "tan" 3x =1, is

    Text Solution

    |

  3. If 1+sintheta+sin^2theta+sin^3theta+..to oo=4+2sqrt3 0<theta<pi, t...

    Text Solution

    |

  4. If alpha a n d beta are the solutions of the equation at a ntheta+bs e...

    Text Solution

    |

  5. Solve sinx+siny=sin(x+y)a n d|x|+|y|=1

    Text Solution

    |

  6. The expression (1 + tan x + tan^2 x)(1-cot x + cot^2 x) has the positi...

    Text Solution

    |

  7. If the the equation a sin x + cos 2x=2a-7 possesses a solution, then f...

    Text Solution

    |

  8. The equation "sin"^(6) x + "cos"^(6) x = lambda, has a solution if

    Text Solution

    |

  9. If y + "cos" theta = "sin" theta has a real solution, then

    Text Solution

    |

  10. The solution set of the equation 4 sin theta. Cos theta-2 cos theta-2s...

    Text Solution

    |

  11. The most general solution of tan theta =-1 and cos theta = 1/(sqrt(2))...

    Text Solution

    |

  12. The complex numbers sin x +i cos 2x and cos x -i sin 2x are conjugate ...

    Text Solution

    |

  13. The smallest positive root of the equation tanx-x=0 lies in (0,pi/2) ...

    Text Solution

    |

  14. The number of solutions of the equation "sin" x = "cos" 3x " in " [0, ...

    Text Solution

    |

  15. Find the general values of theta satisfying tan theta + tan ((3pi)/...

    Text Solution

    |

  16. If sin theta+ cos theta = sqrt(2) cos theta, (theta ne 90^(@)) then v...

    Text Solution

    |

  17. The number of solutions of the equation tanx+secx=2cosx lying in the i...

    Text Solution

    |

  18. If "cot" theta "cot" 7 theta + "cot" theta "cot" 4 theta + "cot" 4 the...

    Text Solution

    |

  19. Find the number of value of x in [0,5pi] satisying the equation 3 cos...

    Text Solution

    |

  20. The number of values of x in [0, 2 pi] that satisfy "cot" x -"cosec"x ...

    Text Solution

    |