Home
Class 12
MATHS
Solutions of the equations "cos"^(2) ((1...

Solutions of the equations `"cos"^(2) ((1)/(2) px)+ "cos"^(2) ((1)/(2) qx) = 1` form an arithmetic progression with common difference

A

`(2)/(p+q)`

B

`(2)/(p-q)`

C

`(pi)/(p+q)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos^2\left(\frac{p}{2} x\right) + \cos^2\left(\frac{q}{2} x\right) = 1 \) and find the common difference of the solutions that form an arithmetic progression (AP), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \cos^2\left(\frac{p}{2} x\right) + \cos^2\left(\frac{q}{2} x\right) = 1 \] Using the identity \( \cos^2 \theta = 1 - \sin^2 \theta \), we can rewrite the equation as: \[ \cos^2\left(\frac{p}{2} x\right) = 1 - \cos^2\left(\frac{q}{2} x\right) = \sin^2\left(\frac{q}{2} x\right) \] ### Step 2: Set up the equation This leads to: \[ \cos^2\left(\frac{p}{2} x\right) = \sin^2\left(\frac{q}{2} x\right) \] Taking the square root of both sides, we have: \[ \cos\left(\frac{p}{2} x\right) = \pm \sin\left(\frac{q}{2} x\right) \] ### Step 3: Use trigonometric identities Using the identity \( \sin\theta = \cos\left(\frac{\pi}{2} - \theta\right) \), we can express the equation as: \[ \cos\left(\frac{p}{2} x\right) = \cos\left(\frac{\pi}{2} - \frac{q}{2} x\right) \] This gives us two cases to consider: 1. \( \frac{p}{2} x = n\pi + \left(\frac{\pi}{2} - \frac{q}{2} x\right) \) 2. \( \frac{p}{2} x = n\pi - \left(\frac{\pi}{2} - \frac{q}{2} x\right) \) ### Step 4: Solve for \( x \) For the first case: \[ \frac{p}{2} x + \frac{q}{2} x = n\pi + \frac{\pi}{2} \] This simplifies to: \[ \frac{(p + q)}{2} x = n\pi + \frac{\pi}{2} \] Thus, \[ x = \frac{2(n\pi + \frac{\pi}{2})}{p + q} = \frac{2n\pi + \pi}{p + q} = \frac{(2n + 1)\pi}{p + q} \] For the second case: \[ \frac{p}{2} x - \frac{q}{2} x = n\pi - \frac{\pi}{2} \] This simplifies to: \[ \frac{(p - q)}{2} x = n\pi - \frac{\pi}{2} \] Thus, \[ x = \frac{2(n\pi - \frac{\pi}{2})}{p - q} = \frac{2n\pi - \pi}{p - q} = \frac{(2n - 1)\pi}{p - q} \] ### Step 5: Identify the common difference The solutions of the first case are: \[ x_n = \frac{(2n + 1)\pi}{p + q} \] The common difference \( D \) can be calculated as: \[ D = x_{n+1} - x_n = \frac{(2(n+1) + 1)\pi}{p + q} - \frac{(2n + 1)\pi}{p + q} = \frac{(2n + 3)\pi - (2n + 1)\pi}{p + q} = \frac{2\pi}{p + q} \] ### Conclusion Thus, the common difference of the arithmetic progression formed by the solutions of the given equation is: \[ \boxed{\frac{2\pi}{p + q}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Number of solution (s) of the equations cos^(-1) ( cos x) = x^(2) is

The solution of the equation cos^(-1)x+cos^(-1)2x=(2pi)/(3) is

Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-1) x = pi/2 is

The solutions of the equation 1+(sin x - cos x)"sin" pi/4=2 "cos"^(2) (5 x)/2 is/are

Number of solution(s) of the equation 2tan^(-1)(2x-1)=cos^(-1)(x) is :

The solution of the equation log _( cosx ^(2)) (3-2x) lt log _( cos x ^(2)) (2x -1) is:

The number of solutions of equation 2 tan^(-1)(x + 1) = cos^(-1)(x/2) .

If S_(n)=n^(2)a+(n)/(4)(n-1)d is the sum of the first n terms of an arithmetic progression, then the common difference is

Number of solution of the equation 2sin^(-1)(x+2)=cos^(-1)(x+3) is :

The solution of equation (sin3x)/(2cos2x+1)=1/2 is

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Exercise
  1. The number of values of x in [0, 2 pi] that satisfy "cot" x -"cosec"x ...

    Text Solution

    |

  2. "cot" theta = "sin" 2 theta, theta ne n pi, n in Z, "if" theta equals

    Text Solution

    |

  3. The solution of the equation "cos"^(2) x-2 "cos" x = 4 "sin" x - "si...

    Text Solution

    |

  4. If 1/6sintheta,costheta,tantheta are in GdotPdot, then theta is equal ...

    Text Solution

    |

  5. Number of solutions of the equation "sin" 2 theta + 2 = 4"sin" theta +...

    Text Solution

    |

  6. If "sin" 2x, (1)/(2) " and cos" 2x are in A.P., then the general valu...

    Text Solution

    |

  7. The number of points of intersection of the curves 2y =1 " and " y = "...

    Text Solution

    |

  8. For m ne n, if "tan" m theta = "tan" n theta, then different values of...

    Text Solution

    |

  9. If cos p theta+cos q theta=0, then prove that the different values of ...

    Text Solution

    |

  10. Solutions of the equations "cos"^(2) ((1)/(2) px)+ "cos"^(2) ((1)/(2) ...

    Text Solution

    |

  11. Solve sec theta-1=(sqrt(2)-1) tan theta.

    Text Solution

    |

  12. If "sec"^(2) theta = sqrt(2) (1-"tan"^(2) theta), "then" theta=

    Text Solution

    |

  13. The most general solution of the equation 8"tan"^(2) (theta)/(2) = 1...

    Text Solution

    |

  14. Solve sin 2x+cos 4x=2.

    Text Solution

    |

  15. If "2sec" (2alpha) = "tan" beta + "cot"beta, then one of the value of ...

    Text Solution

    |

  16. Quadratic equation 8 "sec"^(2) theta - 6 "sec" theta + 1 = 0 has

    Text Solution

    |

  17. The equation sin x + sin y + sin z =-3 for 0 le x le 2pi , 0 le y l...

    Text Solution

    |

  18. The solution set of (5+4 "cos" theta) (2 "cos" theta +1) =0 in the int...

    Text Solution

    |

  19. The solution of the equation 1-"cos" theta = "sin" theta "sin" (theta)...

    Text Solution

    |

  20. {x in R: "cos" 2x + 2"cos"^(2) x = 2} is equal to

    Text Solution

    |