Home
Class 12
MATHS
If "sec"^(2) theta = sqrt(2) (1-"tan"^(2...

If `"sec"^(2) theta = sqrt(2) (1-"tan"^(2) theta), "then" theta=`

A

`n pi + (pi)/(8), n in Z`

B

`n pi +-(pi)/(4), n in Z`

C

`n pi +-(pi)/(8), n in Z`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sec^2 \theta = \sqrt{2} (1 - \tan^2 \theta) \), we will follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We know that: \[ \sec^2 \theta = \frac{1}{\cos^2 \theta} \quad \text{and} \quad \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \] Substituting these identities into the equation gives: \[ \frac{1}{\cos^2 \theta} = \sqrt{2} \left( 1 - \frac{\sin^2 \theta}{\cos^2 \theta} \right) \] ### Step 2: Simplify the right-hand side To simplify the right-hand side, we can express it with a common denominator: \[ \frac{1}{\cos^2 \theta} = \sqrt{2} \left( \frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta} \right) \] This simplifies to: \[ \frac{1}{\cos^2 \theta} = \frac{\sqrt{2} (\cos^2 \theta - \sin^2 \theta)}{\cos^2 \theta} \] ### Step 3: Cancel the common terms Since both sides have the term \( \frac{1}{\cos^2 \theta} \), we can cancel \( \cos^2 \theta \) from both sides (assuming \( \cos^2 \theta \neq 0 \)): \[ 1 = \sqrt{2} (\cos^2 \theta - \sin^2 \theta) \] ### Step 4: Use the double angle identity Recall the double angle identity: \[ \cos 2\theta = \cos^2 \theta - \sin^2 \theta \] Thus, we can rewrite the equation as: \[ 1 = \sqrt{2} \cos 2\theta \] ### Step 5: Solve for \( \cos 2\theta \) Rearranging gives: \[ \cos 2\theta = \frac{1}{\sqrt{2}} \] ### Step 6: Find the general solution for \( 2\theta \) The cosine function equals \( \frac{1}{\sqrt{2}} \) at: \[ 2\theta = \frac{\pi}{4} + 2n\pi \quad \text{and} \quad 2\theta = -\frac{\pi}{4} + 2n\pi \] where \( n \) is any integer. ### Step 7: Divide by 2 to find \( \theta \) Dividing the entire equation by 2 gives: \[ \theta = \frac{\pi}{8} + n\pi \quad \text{and} \quad \theta = -\frac{\pi}{8} + n\pi \] ### Final Solution Thus, the general solutions for \( \theta \) are: \[ \theta = n\pi + \frac{\pi}{8} \quad \text{and} \quad \theta = n\pi - \frac{\pi}{8} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If "tan" 2 theta "tan" theta =1, "then" theta =

theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " then " tan theta=

If sec theta = sqrt(2) and (3pi)/2 lt theta lt 2pi , find the value of (1+tan theta + cosec theta)/(1-cot theta - cosec theta) .

If sec theta =sqrt(2) and (3pi)/(2)lt theta lt 2pi , find the value of (1+tan theta+"cosec"theta)/(1+cot theta-"cosec"theta) .

If a chord joining P(a sec theta, a tan theta), Q(a sec alpha, a tan alpha) on the hyperbola x^(2)-y^(2) =a^(2) is the normal at P, then tan alpha is (a) tan theta (4 sec^(2) theta+1) (b) tan theta (4 sec^(2) theta -1) (c) tan theta (2 sec^(2) theta -1) (d) tan theta (1-2 sec^(2) theta)

If the length of the latusrectum of the ellipse x^(2) tan^(2) theta + y^(2) sec^(2) theta = 1 is 1/2, then theta =

Solve sec theta-1=(sqrt(2)-1) tan theta .

Prove that: sqrt((1-cos^(2)theta)sec^(2)theta)=tan theta

Prove that (sec^(2)theta-1)/(tan^(2)theta)=1

Prove that : sqrt((1-cos^(2)theta)sec^(2)theta)=tantheta

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Exercise
  1. The number of values of x in [0, 2 pi] that satisfy "cot" x -"cosec"x ...

    Text Solution

    |

  2. "cot" theta = "sin" 2 theta, theta ne n pi, n in Z, "if" theta equals

    Text Solution

    |

  3. The solution of the equation "cos"^(2) x-2 "cos" x = 4 "sin" x - "si...

    Text Solution

    |

  4. If 1/6sintheta,costheta,tantheta are in GdotPdot, then theta is equal ...

    Text Solution

    |

  5. Number of solutions of the equation "sin" 2 theta + 2 = 4"sin" theta +...

    Text Solution

    |

  6. If "sin" 2x, (1)/(2) " and cos" 2x are in A.P., then the general valu...

    Text Solution

    |

  7. The number of points of intersection of the curves 2y =1 " and " y = "...

    Text Solution

    |

  8. For m ne n, if "tan" m theta = "tan" n theta, then different values of...

    Text Solution

    |

  9. If cos p theta+cos q theta=0, then prove that the different values of ...

    Text Solution

    |

  10. Solutions of the equations "cos"^(2) ((1)/(2) px)+ "cos"^(2) ((1)/(2) ...

    Text Solution

    |

  11. Solve sec theta-1=(sqrt(2)-1) tan theta.

    Text Solution

    |

  12. If "sec"^(2) theta = sqrt(2) (1-"tan"^(2) theta), "then" theta=

    Text Solution

    |

  13. The most general solution of the equation 8"tan"^(2) (theta)/(2) = 1...

    Text Solution

    |

  14. Solve sin 2x+cos 4x=2.

    Text Solution

    |

  15. If "2sec" (2alpha) = "tan" beta + "cot"beta, then one of the value of ...

    Text Solution

    |

  16. Quadratic equation 8 "sec"^(2) theta - 6 "sec" theta + 1 = 0 has

    Text Solution

    |

  17. The equation sin x + sin y + sin z =-3 for 0 le x le 2pi , 0 le y l...

    Text Solution

    |

  18. The solution set of (5+4 "cos" theta) (2 "cos" theta +1) =0 in the int...

    Text Solution

    |

  19. The solution of the equation 1-"cos" theta = "sin" theta "sin" (theta)...

    Text Solution

    |

  20. {x in R: "cos" 2x + 2"cos"^(2) x = 2} is equal to

    Text Solution

    |