Home
Class 12
MATHS
The most general solution of the equatio...

The most general solution of the equation
`8"tan"^(2) (theta)/(2) = 1 +"sec" theta,` is

A

`theta = 2n pi +-"cos"^(-1) ((1)/(3))`

B

`theta = 2 n pi +-(pi)/(6)`

C

`theta = 2 n pi +- "cos"^(-1)((-1)/(3))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 8 \tan^2 \left( \frac{\theta}{2} \right) = 1 + \sec \theta \), we will follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We know that: \[ \sec \theta = \frac{1}{\cos \theta} \] Thus, we can rewrite the equation as: \[ 8 \tan^2 \left( \frac{\theta}{2} \right) = 1 + \frac{1}{\cos \theta} \] ### Step 2: Use the identity for \(\cos \theta\) Using the identity: \[ \cos \theta = \frac{1 - \tan^2 \left( \frac{\theta}{2} \right)}{1 + \tan^2 \left( \frac{\theta}{2} \right)} \] we can substitute this into our equation. The equation becomes: \[ 8 \tan^2 \left( \frac{\theta}{2} \right) = 1 + \frac{1}{\frac{1 - \tan^2 \left( \frac{\theta}{2} \right)}{1 + \tan^2 \left( \frac{\theta}{2} \right)}} \] ### Step 3: Simplifying the right side By simplifying the right side, we get: \[ 1 + \frac{1 + \tan^2 \left( \frac{\theta}{2} \right)}{1 - \tan^2 \left( \frac{\theta}{2} \right)} = \frac{(1 - \tan^2 \left( \frac{\theta}{2} \right)) + (1 + \tan^2 \left( \frac{\theta}{2} \right))}{1 - \tan^2 \left( \frac{\theta}{2} \right)} = \frac{2}{1 - \tan^2 \left( \frac{\theta}{2} \right)} \] ### Step 4: Set the two sides equal Now, we equate the two sides: \[ 8 \tan^2 \left( \frac{\theta}{2} \right) = \frac{2}{1 - \tan^2 \left( \frac{\theta}{2} \right)} \] ### Step 5: Cross-multiply Cross-multiplying gives: \[ 8 \tan^2 \left( \frac{\theta}{2} \right) (1 - \tan^2 \left( \frac{\theta}{2} \right)) = 2 \] Expanding this results in: \[ 8 \tan^2 \left( \frac{\theta}{2} \right) - 8 \tan^4 \left( \frac{\theta}{2} \right) = 2 \] ### Step 6: Rearranging the equation Rearranging gives: \[ 8 \tan^4 \left( \frac{\theta}{2} \right) - 8 \tan^2 \left( \frac{\theta}{2} \right) + 2 = 0 \] ### Step 7: Let \( p = \tan^2 \left( \frac{\theta}{2} \right) \) Letting \( p = \tan^2 \left( \frac{\theta}{2} \right) \), we rewrite the equation as: \[ 8p^2 - 8p + 2 = 0 \] ### Step 8: Simplifying the quadratic equation Dividing the entire equation by 2: \[ 4p^2 - 4p + 1 = 0 \] ### Step 9: Factoring the quadratic Factoring gives: \[ (2p - 1)^2 = 0 \] Thus, we find: \[ 2p - 1 = 0 \implies p = \frac{1}{2} \] ### Step 10: Back-substituting for \( \tan^2 \left( \frac{\theta}{2} \right) \) Substituting back, we have: \[ \tan^2 \left( \frac{\theta}{2} \right) = \frac{1}{2} \] Taking the square root: \[ \tan \left( \frac{\theta}{2} \right) = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2} \] ### Step 11: Finding \( \theta \) Thus, we have: \[ \frac{\theta}{2} = \tan^{-1} \left( \frac{\sqrt{2}}{2} \right) + n\pi \quad \text{or} \quad \frac{\theta}{2} = \tan^{-1} \left( -\frac{\sqrt{2}}{2} \right) + n\pi \] This gives: \[ \theta = 2\tan^{-1} \left( \frac{\sqrt{2}}{2} \right) + 2n\pi \quad \text{or} \quad \theta = 2\tan^{-1} \left( -\frac{\sqrt{2}}{2} \right) + 2n\pi \] ### Step 12: Final solution The general solution is: \[ \theta = 2n\pi \pm \cos^{-1} \left( \frac{1}{3} \right) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|4 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos
  • TRIGONOMETRIC RATIOS AND IDENTITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

General solution of the equation tan^(2)theta+sec2theta=1 is

The general solution of the equation tan2theta tan3theta=1 is

What is the general solution of the equation: tan^2 theta + 2sqrt3 tan theta = 1?

The general solution of the equation, 2cot.(theta)/(2)=(1+cot theta)^(2) is (n in Z)

The general solution of equation 3 tan(theta - 15^o) = tan(theta+15^o) is:

The number of solutions of the equation "tan" theta + "sec" theta = 2 "cos" theta lying the interval [0, 2pi] is

General solution of the equation 4 cot 2 theta = cot^(2) theta - tan^(2) theta is theta =

The general solution of tan theta+tan 2 theta+tan 3 theta=0 is

The most general solution of "tan " theta = -1, "cos" theta = (1)/(sqrt(2)) , is

The number of solutions of the equation 2 tan^2theta-7sec theta-2 = 0 in the interval [0, 6pi] is

OBJECTIVE RD SHARMA ENGLISH-TRIGONOMETRIC EQUATIONS AND INEQUATIONS-Exercise
  1. The number of values of x in [0, 2 pi] that satisfy "cot" x -"cosec"x ...

    Text Solution

    |

  2. "cot" theta = "sin" 2 theta, theta ne n pi, n in Z, "if" theta equals

    Text Solution

    |

  3. The solution of the equation "cos"^(2) x-2 "cos" x = 4 "sin" x - "si...

    Text Solution

    |

  4. If 1/6sintheta,costheta,tantheta are in GdotPdot, then theta is equal ...

    Text Solution

    |

  5. Number of solutions of the equation "sin" 2 theta + 2 = 4"sin" theta +...

    Text Solution

    |

  6. If "sin" 2x, (1)/(2) " and cos" 2x are in A.P., then the general valu...

    Text Solution

    |

  7. The number of points of intersection of the curves 2y =1 " and " y = "...

    Text Solution

    |

  8. For m ne n, if "tan" m theta = "tan" n theta, then different values of...

    Text Solution

    |

  9. If cos p theta+cos q theta=0, then prove that the different values of ...

    Text Solution

    |

  10. Solutions of the equations "cos"^(2) ((1)/(2) px)+ "cos"^(2) ((1)/(2) ...

    Text Solution

    |

  11. Solve sec theta-1=(sqrt(2)-1) tan theta.

    Text Solution

    |

  12. If "sec"^(2) theta = sqrt(2) (1-"tan"^(2) theta), "then" theta=

    Text Solution

    |

  13. The most general solution of the equation 8"tan"^(2) (theta)/(2) = 1...

    Text Solution

    |

  14. Solve sin 2x+cos 4x=2.

    Text Solution

    |

  15. If "2sec" (2alpha) = "tan" beta + "cot"beta, then one of the value of ...

    Text Solution

    |

  16. Quadratic equation 8 "sec"^(2) theta - 6 "sec" theta + 1 = 0 has

    Text Solution

    |

  17. The equation sin x + sin y + sin z =-3 for 0 le x le 2pi , 0 le y l...

    Text Solution

    |

  18. The solution set of (5+4 "cos" theta) (2 "cos" theta +1) =0 in the int...

    Text Solution

    |

  19. The solution of the equation 1-"cos" theta = "sin" theta "sin" (theta)...

    Text Solution

    |

  20. {x in R: "cos" 2x + 2"cos"^(2) x = 2} is equal to

    Text Solution

    |