Home
Class 9
MATHS
You know that 1/7=0. bar 142857Can you p...

You know that `1/7=0. bar 142857`Can you predict what the decimal expansion of `2/7,3/7,4/7,5/7,6/7`are, without actually doing the long division? If so, how? [Hint: Study the remainders while finding the value of `1/7`carefully.]

Text Solution

AI Generated Solution

The correct Answer is:
To predict the decimal expansions of \( \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7} \) based on the known value of \( \frac{1}{7} = 0.\overline{142857} \), we can use the property of multiplying the decimal expansion of \( \frac{1}{7} \) by integers from 2 to 6. ### Step-by-Step Solution: 1. **Identify the Decimal Expansion of \( \frac{1}{7} \)**: \[ \frac{1}{7} = 0.\overline{142857} \] 2. **Calculate \( \frac{2}{7} \)**: \[ \frac{2}{7} = 2 \times \frac{1}{7} = 2 \times 0.\overline{142857} \] - Multiply \( 0.142857 \) by 2: \[ 0.285714 \text{ (the decimal repeats)} \] - Thus, \[ \frac{2}{7} = 0.\overline{285714} \] 3. **Calculate \( \frac{3}{7} \)**: \[ \frac{3}{7} = 3 \times \frac{1}{7} = 3 \times 0.\overline{142857} \] - Multiply \( 0.142857 \) by 3: \[ 0.428571 \text{ (the decimal repeats)} \] - Thus, \[ \frac{3}{7} = 0.\overline{428571} \] 4. **Calculate \( \frac{4}{7} \)**: \[ \frac{4}{7} = 4 \times \frac{1}{7} = 4 \times 0.\overline{142857} \] - Multiply \( 0.142857 \) by 4: \[ 0.571428 \text{ (the decimal repeats)} \] - Thus, \[ \frac{4}{7} = 0.\overline{571428} \] 5. **Calculate \( \frac{5}{7} \)**: \[ \frac{5}{7} = 5 \times \frac{1}{7} = 5 \times 0.\overline{142857} \] - Multiply \( 0.142857 \) by 5: \[ 0.714285 \text{ (the decimal repeats)} \] - Thus, \[ \frac{5}{7} = 0.\overline{714285} \] 6. **Calculate \( \frac{6}{7} \)**: \[ \frac{6}{7} = 6 \times \frac{1}{7} = 6 \times 0.\overline{142857} \] - Multiply \( 0.142857 \) by 6: \[ 0.857142 \text{ (the decimal repeats)} \] - Thus, \[ \frac{6}{7} = 0.\overline{857142} \] ### Final Results: - \( \frac{2}{7} = 0.\overline{285714} \) - \( \frac{3}{7} = 0.\overline{428571} \) - \( \frac{4}{7} = 0.\overline{571428} \) - \( \frac{5}{7} = 0.\overline{714285} \) - \( \frac{6}{7} = 0.\overline{857142} \)

To predict the decimal expansions of \( \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7} \) based on the known value of \( \frac{1}{7} = 0.\overline{142857} \), we can use the property of multiplying the decimal expansion of \( \frac{1}{7} \) by integers from 2 to 6. ### Step-by-Step Solution: 1. **Identify the Decimal Expansion of \( \frac{1}{7} \)**: \[ \frac{1}{7} = 0.\overline{142857} \] ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1a|5 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1b|8 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

Find the decimal expansion of 1/7

If 1/7=0. 142857 , write the decimal expression of 2/7,3/7,4/7,5/7a n d6/7 without actually doing the long division.

If 1/7=0. 142857 , write the decimal expression of 2/7,3/7,4/7,5/7a n d6/7 without actually doing the long division.

Find the decimal expansions of 10/3, 7/8 and 1/7 .

Find the decimal expansions of (10)/3,7/8 and 1/7 .

7.Find the value of 6^(m-4)=1

In the expansion of (1+x)^n , 7th and 8th terms are equal. Find the value of (7//x+6)^2 .

In the expansion of (1+x)^n , 7th and 8th terms are equal. Find the value of ( 7/x +6)^2 .

Without doing any actual division, find which of the rational numbers have terminating decimal representation : (i) (7)/(16)

Add the following fractions: 1/6+4/6 (ii) 2/7+3/7+4/7