Home
Class 9
MATHS
Rationalise the denominators of the fol...

Rationalise the denominators of the following:(i) `1/(sqrt(7))` (ii) `1/(sqrt(7)-sqrt(6))` (iii) `1/(sqrt(5)+sqrt(2))` (iv) `1/(sqrt(7)-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To rationalize the denominators of the given expressions, we will follow a systematic approach for each part. Here’s the step-by-step solution for each part: ### (i) Rationalize \( \frac{1}{\sqrt{7}} \) 1. **Multiply by the conjugate**: Multiply the numerator and denominator by \( \sqrt{7} \): \[ \frac{1 \cdot \sqrt{7}}{\sqrt{7} \cdot \sqrt{7}} = \frac{\sqrt{7}}{7} \] **Final Answer**: \( \frac{\sqrt{7}}{7} \) ### (ii) Rationalize \( \frac{1}{\sqrt{7} - \sqrt{6}} \) 1. **Multiply by the conjugate**: Multiply the numerator and denominator by \( \sqrt{7} + \sqrt{6} \): \[ \frac{1 \cdot (\sqrt{7} + \sqrt{6})}{(\sqrt{7} - \sqrt{6})(\sqrt{7} + \sqrt{6})} \] 2. **Apply the difference of squares**: The denominator becomes: \[ \sqrt{7}^2 - \sqrt{6}^2 = 7 - 6 = 1 \] 3. **Simplify**: \[ \frac{\sqrt{7} + \sqrt{6}}{1} = \sqrt{7} + \sqrt{6} \] **Final Answer**: \( \sqrt{7} + \sqrt{6} \) ### (iii) Rationalize \( \frac{1}{\sqrt{5} + \sqrt{2}} \) 1. **Multiply by the conjugate**: Multiply the numerator and denominator by \( \sqrt{5} - \sqrt{2} \): \[ \frac{1 \cdot (\sqrt{5} - \sqrt{2})}{(\sqrt{5} + \sqrt{2})(\sqrt{5} - \sqrt{2})} \] 2. **Apply the difference of squares**: The denominator becomes: \[ \sqrt{5}^2 - \sqrt{2}^2 = 5 - 2 = 3 \] 3. **Simplify**: \[ \frac{\sqrt{5} - \sqrt{2}}{3} \] **Final Answer**: \( \frac{\sqrt{5} - \sqrt{2}}{3} \) ### (iv) Rationalize \( \frac{1}{\sqrt{7} - 2} \) 1. **Multiply by the conjugate**: Multiply the numerator and denominator by \( \sqrt{7} + 2 \): \[ \frac{1 \cdot (\sqrt{7} + 2)}{(\sqrt{7} - 2)(\sqrt{7} + 2)} \] 2. **Apply the difference of squares**: The denominator becomes: \[ \sqrt{7}^2 - 2^2 = 7 - 4 = 3 \] 3. **Simplify**: \[ \frac{\sqrt{7} + 2}{3} \] **Final Answer**: \( \frac{\sqrt{7} + 2}{3} \) ---

To rationalize the denominators of the given expressions, we will follow a systematic approach for each part. Here’s the step-by-step solution for each part: ### (i) Rationalize \( \frac{1}{\sqrt{7}} \) 1. **Multiply by the conjugate**: Multiply the numerator and denominator by \( \sqrt{7} \): \[ \frac{1 \cdot \sqrt{7}}{\sqrt{7} \cdot \sqrt{7}} = \frac{\sqrt{7}}{7} \] ...
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1a|5 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1b|8 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

Rationalise the denominator of each of the following (i) 1/(sqrt(12)) (ii) (sqrt(2))/(sqrt(5))

Rationalise the denominator of each of the following (i) 3/(sqrt(5)) (ii) 3/(2sqrt(5))

Rationalise the denominator of the following : (1)/(sqrt(3)-sqrt(2)-1 '

Rationalise the denominator in each of the following: (i) 2/(sqrt(7)) (ii) 2/(3sqrt(3)) (iii) (2sqrt(7))/(sqrt(11))

Rationalise the denominator of 1/(sqrt(2))

Rationalise the denominator of each the following (i)(2)/(sqrt(3))" "(ii)(1)/(3sqrt(5))" "(iii)(1)/(sqrt(8))" "(iv)(sqrt(2)+1)/(sqrt(3))

Rationalise the denominator in each of the following : i) 2/7 (ii) 2/(3sqrt(3)) (iii) (2sqrt(7))/(sqrt(11))

Rationalise the denominator of each of the following (i) (sqrt(3)+\ 1)/(sqrt(2)) (ii) (sqrt(2)+\ sqrt(5))/(sqrt(3)) (iii) (3sqrt(2))/(sqrt(5))

Rationalise the denominator of each the of the following : (i)(1)/(3+sqrt(5))" "(ii)(1)/(sqrt(5)-sqrt(3))" "(iii)(16)/(sqrt(41)+5)" "(iv)(30)/(5sqrt(3)+3sqrt(5))" "(v)(3-2sqrt(2))/(3+2sqrt(2))

Rationalise the denominator of 1/(3+sqrt(2))