Home
Class 9
MATHS
Find the values of a and b in each of th...

Find the values of a and b in each of the following :
`(a)(5+2sqrt3)/(7+4sqrt(3))=a-6sqrt(3)" "(b)(3-sqrt(5))/(3+2sqrt(5))=asqrt(5)-(19)/(11)`
`(c )(sqrt(2)+sqrt(3))/(3sqrt2-2sqrt(3))=2-bsqrt(6)" "(d)(7+sqrt(5))/(7-sqrt(5))-(7-sqrt(5))/(7+sqrt(5))=a+(7)/(11)sqrt(5b)`

Text Solution

Verified by Experts

The correct Answer is:
N/a

(a) `a-6sqrt(3)=(5+2sqrt(3))/(7+4sqrt(3))=(5+2sqrt(3))/(7+4sqrt(3))xx(7-4sqrt(3))/(7-4sqrt(3))`
`=(35-20sqrt(3)+14sqrt(3)-24)/((7)^(2)-(4sqrt(3))^(2))=(11-6sqrt(3))/(49-48)=11-6sqrt(3)`
Comparing, we get
a = 11
(b) `asqrt(5)-(19)/(11)=(3-sqrt(5))/(3+2sqrt(5))=(3-sqrt(5))/(3+2sqrt(5))xx(3-2sqrt(5))/(3-2sqrt(5))=(9-6sqrt(5)-3sqrt(5)+10)/((3)^(2)-(2sqrt(5))^(2))`
`=(-9sqrt(5)+19)/(-11)`
`=(-9sqrt(5))/(-11)+(19)/(-11)=(9)/(11)sqrt(5)-(19)/(11)`
Comparing, we get
`a=(9)/(11)`
(c ) `2-bsqrt(6)=(sqrt(2)+sqrt(3))/(3sqrt(2)-2sqrt(3))=(sqrt(2)+sqrt(3))/(3sqrt(2)-2sqrt(3))xx(3sqrt(2)+2sqrt(3))/(3sqrt(2)+2sqrt(3))`
`=(6+2sqrt(6)+3sqrt(6)+6)/((3sqrt(2))^(2)-(2sqrt(3))^(2))=(12+5sqrt(6))/(18-12)=(12)/(6)+(5sqrt(6))/(6)=2+(5)/(6)sqrt(6)`
Comparing, we get `-b=(5)/(6)" "rArr" "b=(-5)/(6)`
(d) `a+(7)/(11)sqrt(5b)=(7+sqrt(5))/(7-sqrt(5))-(7-sqrt(5))/(7+sqrt(5))=((7+sqrt(5))^(2)-(7-sqrt(5))^(2))/((7-sqrt(5))(7+sqrt(5)))`
`=((49+514sqrt(5))-(49+5-14sqrt(5)))/(49-25)`
`=(28sqrt(5))/(24)=0+(7)/(11)sqrt(5)`
Comparing we get `:." "a=0,b=1`
Promotional Banner

Topper's Solved these Questions

  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1a|5 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1b|8 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • LINES AND ANGLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (long Answer Questions )|6 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise (short Answer Questions)|16 Videos

Similar Questions

Explore conceptually related problems

Find the values of a and b in each of the (5+3sqrt(2))/(5-3sqrt(2))= a+b sqrt(2)

Find the value of a and b in each of the following (i)(3+sqrt(2))/(3-sqrt(2))=a+bsqrt(2)" "(ii)(sqrt(2)+1)/(sqrt(2)-1)=a-bsqrt(2)" "(iii)(5+4sqrt(3))/(5-4sqrt(3))=a-bsqrt(3)

Simplify each of the following : (i) 3/(5-sqrt(3))+2/(5+sqrt(3)) (ii) (4+sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5)) (iii) (sqrt(5)-2)/(sqrt(5)+2)-(sqrt(5)+2)/(sqrt(5)-2)

(sqrt(7)+2sqrt(3))(sqrt(7)-2sqrt(3))

Find sqrt(2+3sqrt(-5)) + sqrt(2-3sqrt(-5))

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =

Show that : (1)/(3-2sqrt(2))- (1)/(2sqrt(2)-sqrt(7)) + (1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5 .

Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2) then-

Find the value of a and b if (i)(sqrt(3)+1)/(sqrt(3)-1)=a+bsqrt(3)" "(ii)(5+2sqrt(3))/(5-2sqrt(3))=a+bsqrt(3)

Prove that: 1/(3-sqrt(8))-1/(sqrt(8)-\ sqrt(7))+1/(sqrt(7)-\ sqrt(6))-1/(sqrt(6)-\ sqrt(5))+1/(sqrt(5)-2)=5