Home
Class 11
MATHS
If f:R to R is defined as: f(x)= {{:(2...

If `f:R to R` is defined as:
`f(x)= {{:(2x+1, "if",x gt 2),(x^(2)-1,"if",-2 lt x lt 2),(2x,"if",x lt -2):}`
then evaluate the following:
(i) `f(1)`
(ii) `f(5)`
(iii) `f(-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) \) at three different values: \( f(1) \), \( f(5) \), and \( f(-3) \). The function is defined piecewise as follows: 1. \( f(x) = 2x + 1 \) if \( x > 2 \) 2. \( f(x) = x^2 - 1 \) if \( -2 < x < 2 \) 3. \( f(x) = 2x \) if \( x < -2 \) Now, let's evaluate each case step by step. ### Step 1: Evaluate \( f(1) \) 1. Identify the interval for \( x = 1 \): - Since \( -2 < 1 < 2 \), we use the second piece of the function: \( f(x) = x^2 - 1 \). 2. Substitute \( x = 1 \) into the function: \[ f(1) = 1^2 - 1 = 1 - 1 = 0 \] ### Step 2: Evaluate \( f(5) \) 1. Identify the interval for \( x = 5 \): - Since \( 5 > 2 \), we use the first piece of the function: \( f(x) = 2x + 1 \). 2. Substitute \( x = 5 \) into the function: \[ f(5) = 2(5) + 1 = 10 + 1 = 11 \] ### Step 3: Evaluate \( f(-3) \) 1. Identify the interval for \( x = -3 \): - Since \( -3 < -2 \), we use the third piece of the function: \( f(x) = 2x \). 2. Substitute \( x = -3 \) into the function: \[ f(-3) = 2(-3) = -6 \] ### Final Results - \( f(1) = 0 \) - \( f(5) = 11 \) - \( f(-3) = -6 \) ### Summary of Answers: - \( f(1) = 0 \) - \( f(5) = 11 \) - \( f(-3) = -6 \)
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2D|18 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2E|5 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2B|14 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|32 Videos

Similar Questions

Explore conceptually related problems

If f : R to R is defined as: f(x)={{:(2x+5","x gt 9),(x^(2)-1","-9 lt x lt 9),(x-4"," x lt -9):} then evaluate (i) f(2), (ii) f(10),(iii) f(-12) and (iv) f[f(3)] .

If a function f(x) is defined as f(x) = {{:(-x",",x lt 0),(x^(2)",",0 le x le 1),(x^(2)-x + 1",",x gt 1):} then

If f:R to R is defined by f(x) = x^(2)-3x+2, write f{f(x)} .

f(x) {{:(-2"," if x le -1),(2x"," if -1lt x le 1),(2"," if x gt 1):}

If f : R to R defined by f ( x) = x^(2) + 1 , then find f^(-1) (-3)

If f: R ->R is defined by f(x) = x^2- 3x + 2 , find f(f(x)) .

If f: R to R is defined as f(x)=2x+5 and it is invertible , then f^(-1) (x) is

If f: R to R be defined by f(x)={(2x:xgt3),(x^(2):1lt x le 3),(3x:x le 1):} Then, f(-1)+f(2)+f(4) is

If f(x)= {{:(,x-5 "for "x le 1),(,4x^(2)-9"for "1 lt x lt 2"then "f'(2+)),(,3x+4"for "xge2):}

If f:R to R is defined by f(x)={{:(,(x-2)/(x^(2)-3x+2),"if "x in R-(1,2)),(,2,"if "x=1),(,1,"if "x=2):} "them " lim_(x to 2) (f(x)-f(2))/(x-2)=

NAGEEN PRAKASHAN ENGLISH-RELATIONS AND FUNCTIONS-Exercise 2C
  1. If f(x)=2x-5 , then evaluate the following: (i) f(0) (ii) f(7) (...

    Text Solution

    |

  2. If f(x)=x^(2), then evaluate: (f(1*2)-f(1))/(1*2-1)

    Text Solution

    |

  3. If f(x)=x^(2) , then evaluate : (f(x+1)-f(x-1))/(4x)

    Text Solution

    |

  4. If f(x)=(x)/(x-1), then evaluate : (f(a//b))/(f(b//a))

    Text Solution

    |

  5. If f(x)=(x-1)/(x+1), then prove that: (f(b)-f(a))/(1+f(b)*f(a))=(b-a...

    Text Solution

    |

  6. If f(x)=(1)/(1-x), then prove that : f[f{f(x)}]=x

    Text Solution

    |

  7. If (x)=tan x, the prove that :f(x)+f(-x)=0

    Text Solution

    |

  8. If f(x)=x+(1)/(x), then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x)...

    Text Solution

    |

  9. If y=f(x)=(ax-b)/(bx-a), the prove that : x=f(y)

    Text Solution

    |

  10. If f(x)=sin x + cos^(2)x, then prove that: f(x)=f(pi-x)

    Text Solution

    |

  11. If f(x)=(1-x^(2))/(1+x^(2)), then prove that: f(tan theta)=cos 2thet...

    Text Solution

    |

  12. If f(x)=x^2+x+1, then find the value of 'x' for which f(x-1) =f(x)

    Text Solution

    |

  13. If f(x)=log(e)x, then prove that :f(xyz)=f(x)+f(y)+f(z)

    Text Solution

    |

  14. If f(x)=log(e)x and g(x)=e^(x), then prove that : f(g(x)}=g{f(x)}

    Text Solution

    |

  15. If f(x)=sqrt((1-x)/(1+x)), then evalaute :f(cos 2theta)

    Text Solution

    |

  16. If f(x)="log"(1+x)/(1-x) , then prove that: f((2x)/(1+x^(2)))=2f(x)

    Text Solution

    |

  17. If f:R to R is defined as: f(x)= {{:(2x+1, "if",x gt 2),(x^(2)-1,"if...

    Text Solution

    |

  18. If f(x) = cos(log x) then f(x)f(y)-1/2[f(x/y)+f(xy)] has the value

    Text Solution

    |

  19. If f(x)=3 cos x and g(x)=sin^(2)x, the evaluate: (f+g)((pi)/(2))

    Text Solution

    |

  20. If f(x)=x^(2) and g(x)=2x , then evaluate, (i) (f+g)(3)" "(ii) (f...

    Text Solution

    |