Home
Class 11
MATHS
If f(x) = (x^(2))/(1 + x^(2)) , then the...

If f(x) = `(x^(2))/(1 + x^(2))` , then the value of f{f(2)} is :

A

`(9)/(41)`

B

`(25)/(41)`

C

`(16)/(25)`

D

`(16)/(41)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(f(2)) \) where \( f(x) = \frac{x^2}{1 + x^2} \), we will follow these steps: ### Step 1: Calculate \( f(2) \) We start by substituting \( x = 2 \) into the function \( f(x) \): \[ f(2) = \frac{2^2}{1 + 2^2} \] Calculating \( 2^2 \): \[ 2^2 = 4 \] Now substituting back into the function: \[ f(2) = \frac{4}{1 + 4} = \frac{4}{5} \] ### Step 2: Calculate \( f(f(2)) \) Now we need to find \( f(f(2)) \), which is \( f\left(\frac{4}{5}\right) \). We substitute \( x = \frac{4}{5} \) into the function \( f(x) \): \[ f\left(\frac{4}{5}\right) = \frac{\left(\frac{4}{5}\right)^2}{1 + \left(\frac{4}{5}\right)^2} \] Calculating \( \left(\frac{4}{5}\right)^2 \): \[ \left(\frac{4}{5}\right)^2 = \frac{16}{25} \] Now substituting this back into the function: \[ f\left(\frac{4}{5}\right) = \frac{\frac{16}{25}}{1 + \frac{16}{25}} \] ### Step 3: Simplify the denominator To simplify the denominator, we need to add \( 1 + \frac{16}{25} \): \[ 1 = \frac{25}{25} \quad \text{so} \quad 1 + \frac{16}{25} = \frac{25 + 16}{25} = \frac{41}{25} \] ### Step 4: Substitute back into the function Now we substitute this back into our expression for \( f\left(\frac{4}{5}\right) \): \[ f\left(\frac{4}{5}\right) = \frac{\frac{16}{25}}{\frac{41}{25}} \] ### Step 5: Simplify the fraction When dividing fractions, we multiply by the reciprocal: \[ f\left(\frac{4}{5}\right) = \frac{16}{25} \times \frac{25}{41} = \frac{16}{41} \] ### Final Answer Thus, the value of \( f(f(2)) \) is: \[ \boxed{\frac{16}{41}} \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2 G|10 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2.1|10 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2E|5 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|32 Videos

Similar Questions

Explore conceptually related problems

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

f(x) = (5-x^(p))^((1)/(2)) . If the value of f(f(2)) = 2 , what is the value of p ?

"If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-4), then the value of f'''(1)+f''(2)+f'(3)+f'(4) equals

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=sqrt(4-x^2)+sqrt(x^2-1) , then the maximum value of (f(x))^2 is ____________

If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

If int((2x+3)dx)/(x(x+1)(x+2)(x+3)+1)=C-(1)/(f(x)) where f(x) is of the form of ax^(2)+bx+c , then the value of f(1) is

If f'(x) = 1/x + x^2 and f(1)=4/3 then find the value of f(x)