Home
Class 11
MATHS
If f(x) = x - (1)/(x) , then the value o...

If f(x) = x - `(1)/(x)` , then the value of f(x) + `f((1)/(x))` is :

A

0

B

2x

C

`(2)/(x)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(x) + f\left(\frac{1}{x}\right) \) given that \( f(x) = x - \frac{1}{x} \). ### Step-by-Step Solution: 1. **Find \( f(x) \)**: \[ f(x) = x - \frac{1}{x} \] 2. **Find \( f\left(\frac{1}{x}\right) \)**: We need to substitute \( \frac{1}{x} \) into the function: \[ f\left(\frac{1}{x}\right) = \frac{1}{x} - \frac{1}{\left(\frac{1}{x}\right)} = \frac{1}{x} - x \] Simplifying this gives: \[ f\left(\frac{1}{x}\right) = \frac{1}{x} - x \] 3. **Add \( f(x) \) and \( f\left(\frac{1}{x}\right) \)**: Now, we add the two results: \[ f(x) + f\left(\frac{1}{x}\right) = \left(x - \frac{1}{x}\right) + \left(\frac{1}{x} - x\right) \] 4. **Combine like terms**: When we combine the terms: \[ f(x) + f\left(\frac{1}{x}\right) = x - \frac{1}{x} + \frac{1}{x} - x \] Notice that \( x \) and \( -x \) cancel each other out, and \( -\frac{1}{x} \) and \( \frac{1}{x} \) also cancel each other out: \[ f(x) + f\left(\frac{1}{x}\right) = 0 \] 5. **Final Result**: Therefore, the value of \( f(x) + f\left(\frac{1}{x}\right) \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2 G|10 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2.1|10 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2E|5 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|32 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

If f(x) = x/(x-1)=1/y then the value of f(y) is

If f(x)=(x+1)/(x-1) then the value of f(f(f(x))) is :

If f(x)=(x-|x|)/(|x|) , then value of f(-1) is

If f(x)=x^(3)-(1)/(x^(3)) , then find the value of f(x)+f(-x) .

If f(x)=1-1/x then write the value of f(f(1/x))dot

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x) , then the value of g ′ (1) is

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

If f'(x) = 1/x + x^2 and f(1)=4/3 then find the value of f(x)