Home
Class 11
MATHS
If f(x) = log(e) ((1-x)/(1+x)) , then f...

If f(x) = ` log_(e) ((1-x)/(1+x))` , then `f((2x)/(1 + x^(2)))` is equal to :

A

`[f(x)]^(2)`

B

2f(x)

C

4f(x)

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f\left(\frac{2x}{1 + x^2}\right) \) given that \( f(x) = \log_e\left(\frac{1 - x}{1 + x}\right) \). ### Step-by-Step Solution: 1. **Substitute into the function**: We start by substituting \( \frac{2x}{1 + x^2} \) into the function \( f(x) \): \[ f\left(\frac{2x}{1 + x^2}\right) = \log_e\left(\frac{1 - \frac{2x}{1 + x^2}}{1 + \frac{2x}{1 + x^2}}\right) \] 2. **Simplify the numerator**: The numerator becomes: \[ 1 - \frac{2x}{1 + x^2} = \frac{(1 + x^2) - 2x}{1 + x^2} = \frac{1 + x^2 - 2x}{1 + x^2} \] 3. **Simplify the denominator**: The denominator becomes: \[ 1 + \frac{2x}{1 + x^2} = \frac{(1 + x^2) + 2x}{1 + x^2} = \frac{1 + x^2 + 2x}{1 + x^2} \] 4. **Combine the fractions**: Now we can combine the numerator and denominator: \[ f\left(\frac{2x}{1 + x^2}\right) = \log_e\left(\frac{\frac{1 + x^2 - 2x}{1 + x^2}}{\frac{1 + x^2 + 2x}{1 + x^2}}\right) = \log_e\left(\frac{1 + x^2 - 2x}{1 + x^2 + 2x}\right) \] 5. **Factor the expressions**: Notice that: \[ 1 + x^2 - 2x = (1 - x)^2 \quad \text{and} \quad 1 + x^2 + 2x = (1 + x)^2 \] Thus, we can rewrite the logarithm: \[ f\left(\frac{2x}{1 + x^2}\right) = \log_e\left(\frac{(1 - x)^2}{(1 + x)^2}\right) \] 6. **Use the properties of logarithms**: Using the property of logarithms \( \log(a^b) = b \log(a) \): \[ f\left(\frac{2x}{1 + x^2}\right) = 2 \log_e\left(\frac{1 - x}{1 + x}\right) \] 7. **Recognize the original function**: Since \( f(x) = \log_e\left(\frac{1 - x}{1 + x}\right) \), we can express our result as: \[ f\left(\frac{2x}{1 + x^2}\right) = 2 f(x) \] ### Final Answer: Thus, the final result is: \[ f\left(\frac{2x}{1 + x^2}\right) = 2 f(x) \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2 G|10 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2.1|10 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2E|5 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|32 Videos

Similar Questions

Explore conceptually related problems

If f(x)=log((1+x)/(1-x))a n dt h e nf((2x)/(1+x^2)) is equal to {f(x)}^2 (b) {f(x)}^3 (c) 2 f(x) (d) 3f(x)

If f(x)="log"(1+x)/(1-x) , then prove that: f((2x)/(1+x^(2)))=2f(x)

If log_(4)((2f(x))/(1-f(x)))=x, " then "(f(2010)+f(-2009)) is equal to

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}, then f'((1)/( e )) is equal to

If f(x)=log_e((1-x)/(1+x)); prove that f(a)+f(b)=f((a+b)/(1+a b))

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f(x) = log ((1+x)/(1-x)) , where -1 lt x lt 1 then f((3x+x^(3))/(1+3x^(2))) - f((2x)/(1+x^(2))) is equal to

If f(x)=log((1+x)/(1-x))a n dg(x)=((3x+x^3)/(1+3x^2)) , then f(g(x)) is equal to (a) f(3x) (b) {f(x)}^3 (c) 3f(x) (d) -f(x)