Home
Class 11
MATHS
If f(x)=3x+|x|, then the value of f(3x)+...

If `f(x)=3x+|x|`, then the value of `f(3x)+f(-x)-f(x)` is:

A

`3(x+|x|)^(2)`

B

`3(x+|x|)`

C

`(x-|x|)^(3)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( f(3x) + f(-x) - f(x) \) given the function \( f(x) = 3x + |x| \). ### Step-by-Step Solution: 1. **Calculate \( f(3x) \)**: \[ f(3x) = 3(3x) + |3x| = 9x + |3x| \] Since \( 3x \) is positive when \( x \geq 0 \), we have \( |3x| = 3x \). Thus, \[ f(3x) = 9x + 3x = 12x \quad \text{(for } x \geq 0\text{)} \] For \( x < 0 \), \( |3x| = -3x \), so: \[ f(3x) = 9x - 3x = 6x \quad \text{(for } x < 0\text{)} \] 2. **Calculate \( f(-x) \)**: \[ f(-x) = 3(-x) + |-x| = -3x + |x| \] Since \( |-x| = |x| \), we have: \[ f(-x) = -3x + |x| \] 3. **Calculate \( f(x) \)**: \[ f(x) = 3x + |x| \] 4. **Combine the results**: Now we need to evaluate \( f(3x) + f(-x) - f(x) \): - For \( x \geq 0 \): \[ f(3x) + f(-x) - f(x) = (12x) + (-3x + x) - (3x + x) \] \[ = 12x - 3x + x - 3x - x = 12x - 7x = 5x \] - For \( x < 0 \): \[ f(3x) + f(-x) - f(x) = (6x) + (-3x + (-x)) - (3x - x) \] \[ = 6x - 3x - x - 3x + x = 6x - 6x = 0 \] 5. **Final Result**: Thus, the value of \( f(3x) + f(-x) - f(x) \) is: - \( 5x \) for \( x \geq 0 \) - \( 0 \) for \( x < 0 \) ### Summary: The expression \( f(3x) + f(-x) - f(x) \) evaluates to: - \( 5x \) for \( x \geq 0 \) - \( 0 \) for \( x < 0 \)
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2.1|10 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2.2|9 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2 F|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|32 Videos

Similar Questions

Explore conceptually related problems

If f(x)=3x^2, then f'(2)=

Ilf f(x)={x^3, x 2 , then find the value of f(-1)+f(1)+f(3) . Also find the value (s) of x for which f(x)=2.

If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}] . Then the value of f(x).g(x).h(x) is

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

If lim_(xtooo) f(x) exists and is finite and nonzero and if lim_(xtooo) {f(x)+(3f(x)-1)/(f^(2)(x))}=3 , then the value of lim_(xtooo) f(x)" is " _______.

If for non zero x , 3f(x)+4f((1)/(x))=(1)/(x)-10 , then the value of int_(2)^(3)f(x)dx is

If f(x)=x^(3)-(1)/(x^(3)) , then find the value of f(x)+f(-x) .

If f(x)=a-(x-3)^(8//9) , then the maximum value of f(x) is