Home
Class 11
MATHS
If A={x:(pi)/(6) lt x lt (pi)/(3)} and f...

If `A={x:(pi)/(6) lt x lt (pi)/(3)}` and `f(x) =cosx-x(1+x),` then `f(A)` is equal to :

A

`[(pi),(6),(pi)/(3)]`

B

`[(-pi)/(3),(-pi)/(6)]`

C

`[(1)/(2)-(pi)/(3)(1+(pi)/(3)),(sqrt(3))/(2)-(pi)/(6)(1+(pi)/(6))]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the range of the function \( f(x) = \cos x - x(1+x) \) over the interval \( A = \left\{ x : \frac{\pi}{6} < x < \frac{\pi}{3} \right\} \). ### Step 1: Define the function The function is given as: \[ f(x) = \cos x - x(1+x) \] We can rewrite it as: \[ f(x) = \cos x - x - x^2 \] ### Step 2: Find the derivative To determine whether the function is increasing or decreasing, we need to find the derivative \( f'(x) \): \[ f'(x) = -\sin x - (1 + 2x) \] This simplifies to: \[ f'(x) = -\sin x - 1 - 2x \] ### Step 3: Analyze the sign of the derivative We need to check the sign of \( f'(x) \) in the interval \( \left( \frac{\pi}{6}, \frac{\pi}{3} \right) \). 1. Since \( \sin x \) is positive in this interval, \( -\sin x \) is negative. 2. The term \( -1 - 2x \) is also negative because \( 2x \) is positive for \( x > 0 \). Thus, \( f'(x) < 0 \) in the interval \( \left( \frac{\pi}{6}, \frac{\pi}{3} \right) \). This means that \( f(x) \) is a decreasing function in this interval. ### Step 4: Calculate the function values at the endpoints To find the range of \( f(x) \), we need to evaluate \( f(x) \) at the endpoints of the interval: 1. **At \( x = \frac{\pi}{6} \)**: \[ f\left(\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right) - \frac{\pi}{6}\left(1 + \frac{\pi}{6}\right) \] We know that \( \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \), so: \[ f\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} - \frac{\pi}{6}\left(1 + \frac{\pi}{6}\right) \] 2. **At \( x = \frac{\pi}{3} \)**: \[ f\left(\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) - \frac{\pi}{3}\left(1 + \frac{\pi}{3}\right) \] We know that \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \), so: \[ f\left(\frac{\pi}{3}\right) = \frac{1}{2} - \frac{\pi}{3}\left(1 + \frac{\pi}{3}\right) \] ### Step 5: Determine the range of \( f(A) \) Since \( f(x) \) is decreasing, the maximum value occurs at \( x = \frac{\pi}{6} \) and the minimum value occurs at \( x = \frac{\pi}{3} \). Thus, the range of \( f(A) \) is: \[ f(A) = \left[ f\left(\frac{\pi}{3}\right), f\left(\frac{\pi}{6}\right) \right] \] ### Final Result The final result for \( f(A) \) is: \[ f(A) = \left[ \frac{1}{2} - \frac{\pi}{3}\left(1 + \frac{\pi}{3}\right), \frac{\sqrt{3}}{2} - \frac{\pi}{6}\left(1 + \frac{\pi}{6}\right) \right] \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2.1|10 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2.2|9 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2 F|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • SEQUENCE AND SERIES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|32 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

If f(x) = |cosx| , then f'(pi/4) is equal to "……."

Given A = {x : (pi)/(6) le x le (pi)/( 3)} and f(x) = cos x - x ( 1+ x ) . Find f (A) .

If f(x) = |cosx| , then f'(pi/4) is equal to "……."

If f(x) = |x|^ |tanx| then f'( -pi/6) is equal to

If f(x)=(2-3cosx)/(sinx) , then f'((pi)/(4)) is equal to

If cos x (dy)/(dx)-y sin x = 6x, (0 lt x lt (pi)/(2)) and y((pi)/(3))=0 , then y((pi)/(6)) is equal to :-

If cos x + sin x = a , (- (pi)/(2) lt x lt - (pi)/(4)) , then cos 2 x is equal to

If sec x cos 5x=-1 and 0 lt x lt (pi)/(4) , then x is equal to