Home
Class 11
MATHS
Convert ((2+3i)^(2))/(2-i) in the form o...

Convert `((2+3i)^(2))/(2-i)` in the form of `a+ib` and find its conjugate.

Text Solution

AI Generated Solution

The correct Answer is:
To convert the expression \(\frac{(2 + 3i)^2}{2 - i}\) into the form \(a + ib\) and find its conjugate, we can follow these steps: ### Step 1: Expand the numerator First, we need to calculate \((2 + 3i)^2\). \[ (2 + 3i)^2 = 2^2 + 2 \cdot 2 \cdot 3i + (3i)^2 = 4 + 12i + 9i^2 \] Since \(i^2 = -1\), we can substitute that in: \[ = 4 + 12i + 9(-1) = 4 + 12i - 9 = -5 + 12i \] ### Step 2: Write the expression Now we can rewrite the expression: \[ z = \frac{-5 + 12i}{2 - i} \] ### Step 3: Rationalize the denominator To simplify this expression, we multiply the numerator and denominator by the conjugate of the denominator, which is \(2 + i\): \[ z = \frac{(-5 + 12i)(2 + i)}{(2 - i)(2 + i)} \] ### Step 4: Calculate the denominator Now, calculate the denominator: \[ (2 - i)(2 + i) = 2^2 - i^2 = 4 - (-1) = 4 + 1 = 5 \] ### Step 5: Calculate the numerator Next, calculate the numerator: \[ (-5 + 12i)(2 + i) = -5 \cdot 2 + (-5) \cdot i + 12i \cdot 2 + 12i \cdot i \] \[ = -10 - 5i + 24i + 12i^2 \] Substituting \(i^2 = -1\): \[ = -10 - 5i + 24i + 12(-1) = -10 - 12 + 19i = -22 + 19i \] ### Step 6: Combine the results Now, we can combine the results: \[ z = \frac{-22 + 19i}{5} = -\frac{22}{5} + \frac{19}{5}i \] ### Step 7: Write in the form \(a + ib\) Thus, we have: \[ z = -\frac{22}{5} + \frac{19}{5}i \] ### Step 8: Find the conjugate The conjugate of a complex number \(a + ib\) is \(a - ib\). Therefore, the conjugate of \(z\) is: \[ \bar{z} = -\frac{22}{5} - \frac{19}{5}i \] ### Final Answer So, the expression in the form \(a + ib\) is: \[ -\frac{22}{5} + \frac{19}{5}i \] And the conjugate is: \[ -\frac{22}{5} - \frac{19}{5}i \] ---

To convert the expression \(\frac{(2 + 3i)^2}{2 - i}\) into the form \(a + ib\) and find its conjugate, we can follow these steps: ### Step 1: Expand the numerator First, we need to calculate \((2 + 3i)^2\). \[ (2 + 3i)^2 = 2^2 + 2 \cdot 2 \cdot 3i + (3i)^2 = 4 + 12i + 9i^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5A|9 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5B|29 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Convert ((1)/(2)+2i)^(3) in the form of a+ib .

Convert (1+3i)/(1-2i) into the polar form.

Express (1 -i)^(4) in the form of a +ib.

Convert (4-isqrt(3))/(4+isqrt(3)) in the form of a+ib .

Convert [(3+2i)/( 3-2i)+ (3 -2i)/(3+2i)] in the form of (a+ib) .

Express ( 4 - 5/2 i)^(2) in the form of a + ib.

Express the comple number ((1+sqrt(3)i)^(2))/(sqrt(3)-i) in the form of a+ib . Hence find the modulus and argument of the complex number.

Express: ((1+i)^3)/(4+3i) in the form a+ib

Express (2+i)/((1+i)(1-2i)) in the form of a+ib . Find its modulus .

Express ( 1/3 + 4/3 i)^(2) in the form of a + ib.

NAGEEN PRAKASHAN ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATION -MISCELLANEOUS EXERCISE
  1. Convert ((2+3i)^(2))/(2-i) in the form of a+ib and find its conjugate.

    Text Solution

    |

  2. Evaluate : [i^(18)+(1/i)^(25)]^3

    Text Solution

    |

  3. For any two complex numbers z1and z2, prove that R e(z1z2)=R ez1R e z2...

    Text Solution

    |

  4. Reduce (1/(1-4i)-2/(1+i))((3-4i)/(5+i))to the standard form.

    Text Solution

    |

  5. If under root of (a+i b)/(c+i d)=x+i y , Prove (a^2+b^2)/(c^2+d^2)=(x...

    Text Solution

    |

  6. Convert the following in the polar form : (i) (1+7i)/((2-i)^2) (ii) (...

    Text Solution

    |

  7. Solve the equation : 3x^2-4x+(20)/3=0

    Text Solution

    |

  8. Solve the equation :x^2-2x+3/2=0

    Text Solution

    |

  9. Solve the equation :27 x^2-10 x+1=0

    Text Solution

    |

  10. Solve the following quadratic: 21 x^2-28 x+10=0

    Text Solution

    |

  11. If z1=2-i ,z2=1+i ,find |(z1+z2+1)/(z1-z2+i)|

    Text Solution

    |

  12. If a + i b =((x+i)^2)/(2x^2+1),prove that a^2+b^2=((x^2+1)^2)/((2x^2+...

    Text Solution

    |

  13. If z1=2-i ,\ +2=-2+i , find : R e((z1z2)/(z1))

    Text Solution

    |

  14. Find the modulus and argument of the complex number (1+2i)/(1-3i).

    Text Solution

    |

  15. Find the real numbers x and y if (x-i y)(3+5i)is the conjugate of -6-...

    Text Solution

    |

  16. Find the modulus of (1+i)/(1-i)-(1-i)/(1+i)

    Text Solution

    |

  17. If (x+i y)^3=u+i v ,then show that u/x+v/y=4(x^2-y^2).

    Text Solution

    |

  18. If alphaand betaare different complex numbers with |beta|=1,then fin...

    Text Solution

    |

  19. Find the number of non-zero integral solution of the equation |1-i|^x=...

    Text Solution

    |

  20. If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a^2 +...

    Text Solution

    |

  21. If ((1+i)/(1-i))^m=1, then find the least positive integral value of m...

    Text Solution

    |