Home
Class 11
MATHS
Find the square root of (-8 -6i)....

Find the square root of `(-8 -6i)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the square root of the complex number \(-8 - 6i\), we can follow these steps: ### Step 1: Set up the equation Let \( z = \sqrt{-8 - 6i} \). We can express \( z \) in the form \( z = x - iy \), where \( x \) and \( y \) are real numbers. ### Step 2: Square both sides Squaring both sides gives us: \[ z^2 = -8 - 6i \implies (x - iy)^2 = -8 - 6i \] ### Step 3: Expand the left side Expanding the left side: \[ (x - iy)^2 = x^2 - 2xyi - y^2i^2 \] Since \( i^2 = -1 \), we can rewrite it as: \[ x^2 - 2xyi + y^2 = x^2 - y^2 - 2xyi \] ### Step 4: Equate real and imaginary parts Now we equate the real and imaginary parts: 1. Real part: \( x^2 - y^2 = -8 \) (Equation 1) 2. Imaginary part: \( -2xy = -6 \) or \( 2xy = 6 \) (Equation 2) ### Step 5: Solve for \( xy \) From Equation 2, we can simplify: \[ xy = 3 \] ### Step 6: Express \( y \) in terms of \( x \) From \( xy = 3 \), we can express \( y \) as: \[ y = \frac{3}{x} \] ### Step 7: Substitute \( y \) in Equation 1 Substituting \( y \) into Equation 1: \[ x^2 - \left(\frac{3}{x}\right)^2 = -8 \] This simplifies to: \[ x^2 - \frac{9}{x^2} = -8 \] ### Step 8: Multiply through by \( x^2 \) To eliminate the fraction, multiply through by \( x^2 \): \[ x^4 + 8x^2 - 9 = 0 \] ### Step 9: Let \( u = x^2 \) Let \( u = x^2 \), then we have a quadratic equation: \[ u^2 + 8u - 9 = 0 \] ### Step 10: Solve the quadratic equation Using the quadratic formula \( u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ u = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 1 \cdot (-9)}}{2 \cdot 1} = \frac{-8 \pm \sqrt{64 + 36}}{2} = \frac{-8 \pm \sqrt{100}}{2} = \frac{-8 \pm 10}{2} \] This gives us two possible values for \( u \): 1. \( u = 1 \) (since \( -9 \) is not valid) 2. \( u = -9 \) (not valid as \( u = x^2 \) must be non-negative) ### Step 11: Find \( x \) Since \( u = x^2 = 1 \), we have: \[ x = \pm 1 \] ### Step 12: Find \( y \) Using \( xy = 3 \): 1. If \( x = 1 \), then \( y = 3 \). 2. If \( x = -1 \), then \( y = -3 \). ### Step 13: Write the final answers Thus, the square roots of \(-8 - 6i\) are: \[ \sqrt{-8 - 6i} = 1 - 3i \quad \text{and} \quad -1 + 3i \] ### Final Answer The square root of \(-8 - 6i\) is \( \pm (1 - 3i) \). ---

To find the square root of the complex number \(-8 - 6i\), we can follow these steps: ### Step 1: Set up the equation Let \( z = \sqrt{-8 - 6i} \). We can express \( z \) in the form \( z = x - iy \), where \( x \) and \( y \) are real numbers. ### Step 2: Square both sides Squaring both sides gives us: \[ ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5A|9 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5B|29 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Find the square root of (a) -8-6i

Find the square root of 484 .

Find the square root of -6+8i.

Find the square root of -7-24i

Find the square root of 5-12i

Find the square root of 8-15i .

The square root of -8i is

Find the square root of 6400.

Find the square root of : 7744

Find the square root of : 4761

NAGEEN PRAKASHAN ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATION -MISCELLANEOUS EXERCISE
  1. Find the square root of (-8 -6i).

    Text Solution

    |

  2. Evaluate : [i^(18)+(1/i)^(25)]^3

    Text Solution

    |

  3. For any two complex numbers z1and z2, prove that R e(z1z2)=R ez1R e z2...

    Text Solution

    |

  4. Reduce (1/(1-4i)-2/(1+i))((3-4i)/(5+i))to the standard form.

    Text Solution

    |

  5. If under root of (a+i b)/(c+i d)=x+i y , Prove (a^2+b^2)/(c^2+d^2)=(x...

    Text Solution

    |

  6. Convert the following in the polar form : (i) (1+7i)/((2-i)^2) (ii) (...

    Text Solution

    |

  7. Solve the equation : 3x^2-4x+(20)/3=0

    Text Solution

    |

  8. Solve the equation :x^2-2x+3/2=0

    Text Solution

    |

  9. Solve the equation :27 x^2-10 x+1=0

    Text Solution

    |

  10. Solve the following quadratic: 21 x^2-28 x+10=0

    Text Solution

    |

  11. If z1=2-i ,z2=1+i ,find |(z1+z2+1)/(z1-z2+i)|

    Text Solution

    |

  12. If a + i b =((x+i)^2)/(2x^2+1),prove that a^2+b^2=((x^2+1)^2)/((2x^2+...

    Text Solution

    |

  13. If z1=2-i ,\ +2=-2+i , find : R e((z1z2)/(z1))

    Text Solution

    |

  14. Find the modulus and argument of the complex number (1+2i)/(1-3i).

    Text Solution

    |

  15. Find the real numbers x and y if (x-i y)(3+5i)is the conjugate of -6-...

    Text Solution

    |

  16. Find the modulus of (1+i)/(1-i)-(1-i)/(1+i)

    Text Solution

    |

  17. If (x+i y)^3=u+i v ,then show that u/x+v/y=4(x^2-y^2).

    Text Solution

    |

  18. If alphaand betaare different complex numbers with |beta|=1,then fin...

    Text Solution

    |

  19. Find the number of non-zero integral solution of the equation |1-i|^x=...

    Text Solution

    |

  20. If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a^2 +...

    Text Solution

    |

  21. If ((1+i)/(1-i))^m=1, then find the least positive integral value of m...

    Text Solution

    |