Home
Class 11
MATHS
Convert the complex number z=(i-1)/(cosp...

Convert the complex number `z=(i-1)/(cospi/3+isinpi/3)`in the polar form.

Text Solution

AI Generated Solution

The correct Answer is:
To convert the complex number \( z = \frac{i - 1}{\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}} \) into polar form, we will follow these steps: ### Step 1: Simplify the denominator The denominator is given as \( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \). We know that: \[ \cos \frac{\pi}{3} = \frac{1}{2}, \quad \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \] Thus, the denominator becomes: \[ \frac{1}{2} + i \frac{\sqrt{3}}{2} \] ### Step 2: Rewrite \( z \) Now we can rewrite \( z \): \[ z = \frac{i - 1}{\frac{1}{2} + i \frac{\sqrt{3}}{2}} \] ### Step 3: Multiply numerator and denominator by the conjugate of the denominator To eliminate the complex number in the denominator, we multiply the numerator and denominator by the conjugate of the denominator: \[ z = \frac{(i - 1)(\frac{1}{2} - i \frac{\sqrt{3}}{2})}{(\frac{1}{2} + i \frac{\sqrt{3}}{2})(\frac{1}{2} - i \frac{\sqrt{3}}{2})} \] ### Step 4: Calculate the denominator Using the formula \( (a + bi)(a - bi) = a^2 + b^2 \): \[ \text{Denominator} = \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1 \] ### Step 5: Calculate the numerator Now, let's calculate the numerator: \[ (i - 1)(\frac{1}{2} - i \frac{\sqrt{3}}{2}) = i \cdot \frac{1}{2} - i \cdot i \frac{\sqrt{3}}{2} - 1 \cdot \frac{1}{2} + 1 \cdot i \frac{\sqrt{3}}{2} \] \[ = \frac{i}{2} + \frac{\sqrt{3}}{2} - \frac{1}{2} + i \frac{\sqrt{3}}{2} \] Combining real and imaginary parts: \[ = \left(\frac{\sqrt{3}}{2} - \frac{1}{2}\right) + i \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right) \] \[ = \frac{\sqrt{3} - 1}{2} + i \frac{1 + \sqrt{3}}{2} \] ### Step 6: Write \( z \) Thus, we have: \[ z = \frac{\sqrt{3} - 1}{2} + i \frac{1 + \sqrt{3}}{2} \] ### Step 7: Find \( r \) and \( \theta \) In polar form, \( z = r(\cos \theta + i \sin \theta) \). To find \( r \): \[ r = \sqrt{\left(\frac{\sqrt{3} - 1}{2}\right)^2 + \left(\frac{1 + \sqrt{3}}{2}\right)^2} \] Calculating: \[ = \sqrt{\frac{(\sqrt{3} - 1)^2 + (1 + \sqrt{3})^2}{4}} = \frac{1}{2} \sqrt{(\sqrt{3} - 1)^2 + (1 + \sqrt{3})^2} \] Expanding: \[ (\sqrt{3} - 1)^2 = 3 - 2\sqrt{3} + 1 = 4 - 2\sqrt{3} \] \[ (1 + \sqrt{3})^2 = 1 + 2\sqrt{3} + 3 = 4 + 2\sqrt{3} \] Adding: \[ (4 - 2\sqrt{3}) + (4 + 2\sqrt{3}) = 8 \] Thus: \[ r = \frac{1}{2} \sqrt{8} = \sqrt{2} \] ### Step 8: Find \( \theta \) To find \( \theta \): \[ \tan \theta = \frac{\text{Imaginary part}}{\text{Real part}} = \frac{\frac{1 + \sqrt{3}}{2}}{\frac{\sqrt{3} - 1}{2}} = \frac{1 + \sqrt{3}}{\sqrt{3} - 1} \] This can be simplified using the tangent addition formula: \[ \theta = 75^\circ \text{ or } \frac{5\pi}{12} \] ### Final Polar Form Thus, the polar form of \( z \) is: \[ z = \sqrt{2} \left( \cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \right) \]

To convert the complex number \( z = \frac{i - 1}{\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}} \) into polar form, we will follow these steps: ### Step 1: Simplify the denominator The denominator is given as \( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \). We know that: \[ \cos \frac{\pi}{3} = \frac{1}{2}, \quad \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \] Thus, the denominator becomes: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5A|9 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5B|29 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Represent the complex number z = 1 +isqrt(3) in the polar form.

Covert the complex number z = 1 + cos (8pi)/(5) + i. sin (8pi)/(5) in polar form. Find its modulus and argument.

Convert the complex number (1+i)/(1-i) in the polar form

Convert the complex number (-16)/(1+isqrt(3)) into polar form.

Convert the complex number (-16)/(1+isqrt(3)) into polar form.

Convert of the complex number in the polar form: i

Convert the complex number (1+isqrt(3)) into polar form.

Convert the complex number 4/(1-isqrt3) in the polar form.

Convert of the complex number in the polar form: 1-i

Convert of the complex number in the polar form: 1-i

NAGEEN PRAKASHAN ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATION -MISCELLANEOUS EXERCISE
  1. Convert the complex number z=(i-1)/(cospi/3+isinpi/3)in the polar form...

    Text Solution

    |

  2. Evaluate : [i^(18)+(1/i)^(25)]^3

    Text Solution

    |

  3. For any two complex numbers z1and z2, prove that R e(z1z2)=R ez1R e z2...

    Text Solution

    |

  4. Reduce (1/(1-4i)-2/(1+i))((3-4i)/(5+i))to the standard form.

    Text Solution

    |

  5. If under root of (a+i b)/(c+i d)=x+i y , Prove (a^2+b^2)/(c^2+d^2)=(x...

    Text Solution

    |

  6. Convert the following in the polar form : (i) (1+7i)/((2-i)^2) (ii) (...

    Text Solution

    |

  7. Solve the equation : 3x^2-4x+(20)/3=0

    Text Solution

    |

  8. Solve the equation :x^2-2x+3/2=0

    Text Solution

    |

  9. Solve the equation :27 x^2-10 x+1=0

    Text Solution

    |

  10. Solve the following quadratic: 21 x^2-28 x+10=0

    Text Solution

    |

  11. If z1=2-i ,z2=1+i ,find |(z1+z2+1)/(z1-z2+i)|

    Text Solution

    |

  12. If a + i b =((x+i)^2)/(2x^2+1),prove that a^2+b^2=((x^2+1)^2)/((2x^2+...

    Text Solution

    |

  13. If z1=2-i ,\ +2=-2+i , find : R e((z1z2)/(z1))

    Text Solution

    |

  14. Find the modulus and argument of the complex number (1+2i)/(1-3i).

    Text Solution

    |

  15. Find the real numbers x and y if (x-i y)(3+5i)is the conjugate of -6-...

    Text Solution

    |

  16. Find the modulus of (1+i)/(1-i)-(1-i)/(1+i)

    Text Solution

    |

  17. If (x+i y)^3=u+i v ,then show that u/x+v/y=4(x^2-y^2).

    Text Solution

    |

  18. If alphaand betaare different complex numbers with |beta|=1,then fin...

    Text Solution

    |

  19. Find the number of non-zero integral solution of the equation |1-i|^x=...

    Text Solution

    |

  20. If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a^2 +...

    Text Solution

    |

  21. If ((1+i)/(1-i))^m=1, then find the least positive integral value of m...

    Text Solution

    |