Home
Class 11
MATHS
Solve the equation x^(2)+x+(1)/(sqrt(3))...

Solve the equation `x^(2)+x+(1)/(sqrt(3))=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 + x + \frac{1}{\sqrt{3}} = 0 \), we will use the quadratic formula. ### Step-by-Step Solution: 1. **Identify the coefficients**: The given equation is in the standard form \( ax^2 + bx + c = 0 \). Here, \( a = 1 \), \( b = 1 \), and \( c = \frac{1}{\sqrt{3}} \). 2. **Apply the quadratic formula**: The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting the values of \( a \), \( b \), and \( c \): \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot \frac{1}{\sqrt{3}}}}{2 \cdot 1} \] 3. **Calculate the discriminant**: First, calculate \( b^2 - 4ac \): \[ b^2 = 1^2 = 1 \] \[ 4ac = 4 \cdot 1 \cdot \frac{1}{\sqrt{3}} = \frac{4}{\sqrt{3}} \] Now, substitute these values into the discriminant: \[ 1 - \frac{4}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{3}} - \frac{4}{\sqrt{3}} = \frac{\sqrt{3} - 4}{\sqrt{3}} \] 4. **Substitute back into the quadratic formula**: Now, substituting the discriminant back into the formula: \[ x = \frac{-1 \pm \sqrt{\frac{\sqrt{3} - 4}{\sqrt{3}}}}{2} \] 5. **Simplify the square root**: The square root can be simplified: \[ x = \frac{-1 \pm \frac{\sqrt{\sqrt{3} - 4}}{\sqrt{\sqrt{3}}}}{2} \] This gives: \[ x = \frac{-1 \pm \sqrt{\sqrt{3} - 4}}{2} \] 6. **Express the final roots**: The roots can be expressed as: \[ x_1 = \frac{-1 + i\sqrt{4 - \sqrt{3}}}{2}, \quad x_2 = \frac{-1 - i\sqrt{4 - \sqrt{3}}}{2} \] where \( i = \sqrt{-1} \). ### Final Answer: The roots of the equation \( x^2 + x + \frac{1}{\sqrt{3}} = 0 \) are: \[ x_1 = \frac{-1 + i\sqrt{4 - \sqrt{3}}}{2}, \quad x_2 = \frac{-1 - i\sqrt{4 - \sqrt{3}}}{2} \]

To solve the equation \( x^2 + x + \frac{1}{\sqrt{3}} = 0 \), we will use the quadratic formula. ### Step-by-Step Solution: 1. **Identify the coefficients**: The given equation is in the standard form \( ax^2 + bx + c = 0 \). Here, \( a = 1 \), \( b = 1 \), and \( c = \frac{1}{\sqrt{3}} \). ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5A|9 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5B|29 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Solve the equation: x^2+3=0

Solve the equation: x^2+x+1/(sqrt(2))= 0

Solve the equation x^2-(sqrt(3)+1)x+sqrt(3)=0 by the method of completing the square.

Solve the equation: 2x^(2)-6sqrt(2)x-1=0

Solve the equation sqrt(2x-1)+sqrt(3x-2)=sqrt(4x-3)+sqrt(5x-4).

Solve the equation x^(2)-(2sqrt(2)+3i)x+6isqrt(2)=0 by factorization method.

Solve the equation sqrt(x)=x-2

Solve the equation sin^(-1)x+sin^(-1)6sqrt(3)x=(-pi)/2dot

Solve the equation x^2-x+1=1/2+sqrt(x-3/4), w h e r e xgeq3/4

Solve the equation : x^2-2x+3/2=0

NAGEEN PRAKASHAN ENGLISH-COMPLEX NUMBERS AND QUADRATIC EQUATION -MISCELLANEOUS EXERCISE
  1. Solve the equation x^(2)+x+(1)/(sqrt(3))=0

    Text Solution

    |

  2. Evaluate : [i^(18)+(1/i)^(25)]^3

    Text Solution

    |

  3. For any two complex numbers z1and z2, prove that R e(z1z2)=R ez1R e z2...

    Text Solution

    |

  4. Reduce (1/(1-4i)-2/(1+i))((3-4i)/(5+i))to the standard form.

    Text Solution

    |

  5. If under root of (a+i b)/(c+i d)=x+i y , Prove (a^2+b^2)/(c^2+d^2)=(x...

    Text Solution

    |

  6. Convert the following in the polar form : (i) (1+7i)/((2-i)^2) (ii) (...

    Text Solution

    |

  7. Solve the equation : 3x^2-4x+(20)/3=0

    Text Solution

    |

  8. Solve the equation :x^2-2x+3/2=0

    Text Solution

    |

  9. Solve the equation :27 x^2-10 x+1=0

    Text Solution

    |

  10. Solve the following quadratic: 21 x^2-28 x+10=0

    Text Solution

    |

  11. If z1=2-i ,z2=1+i ,find |(z1+z2+1)/(z1-z2+i)|

    Text Solution

    |

  12. If a + i b =((x+i)^2)/(2x^2+1),prove that a^2+b^2=((x^2+1)^2)/((2x^2+...

    Text Solution

    |

  13. If z1=2-i ,\ +2=-2+i , find : R e((z1z2)/(z1))

    Text Solution

    |

  14. Find the modulus and argument of the complex number (1+2i)/(1-3i).

    Text Solution

    |

  15. Find the real numbers x and y if (x-i y)(3+5i)is the conjugate of -6-...

    Text Solution

    |

  16. Find the modulus of (1+i)/(1-i)-(1-i)/(1+i)

    Text Solution

    |

  17. If (x+i y)^3=u+i v ,then show that u/x+v/y=4(x^2-y^2).

    Text Solution

    |

  18. If alphaand betaare different complex numbers with |beta|=1,then fin...

    Text Solution

    |

  19. Find the number of non-zero integral solution of the equation |1-i|^x=...

    Text Solution

    |

  20. If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a^2 +...

    Text Solution

    |

  21. If ((1+i)/(1-i))^m=1, then find the least positive integral value of m...

    Text Solution

    |