Home
Class 11
MATHS
Show that : (1)/(i)+(1)/(i^(2))+(1)/(i^(...

Show that : `(1)/(i)+(1)/(i^(2))+(1)/(i^(3))+(1)/(i^(4))=0`

Text Solution

Verified by Experts

The correct Answer is:
N/a
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5B|29 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5C|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Simplify: (1)/(i)- (1)/(i^(2)) + (1)/(i^(3)) - (1)/(i^(4))

Simplify: (1)/(i) + (1)/(i^(2)) + (1)/(i^(3)) + (1)/(i^(4))

The imaginary number I is defined such that i^(2)=-1 . Which of the following options is equivalent to ((1)/(i)+(1)/(i^2)+(1)/(i^3)+(1)/(i^4)) ?

The value of (1+i) (1-i^(2)) (1+i^(4))(1-i^(5)) is

Show that: {i^(19)+(1/i)^(25)}^2=-4 (ii) {i^(17)-(1/i)^(34)}^2=2i (iii) {i^(18)+(1/i)^(24)}^3=0 (iv) i^n+i^(n+1)+i^(n+2)+i^(n+3)=0 for all n in Ndot

Simplify the following : (i) [i^(19) +(1)/(i^(25))]^(2) (ii) [i^(5)- (1)/(i^(3))]^(4)

Show that (1+ 2i)/(3+4i) xx (1-2i)/(3-4i) is real

Convert the following in the form of (a+ib) : (i) (1+i)^(4) (ii) (-3+(1)/(2)i)^(3) (iii) (1-i)(3+4i) (iv) (1+i)(1+ 2i)(1+ 3i) (v) (3+5i)/(6-i) (vi) ((2+3i)^(2))/(2+i) (vii) ((1+ i)(2+i))/((3+i)) (viii) (2-i)^(-3)

If I_(n)=int_(0)^(pi//4) tan^(n)x dx , then (1)/(I_(2)+I_(4)),(1)/(I_(3)+I_(5)),(1)/(I_(4)+I_(6)),... from\

The reflection of the complex number (2-i)/(3+i) , (where i=sqrt(-1) in the straight line z(1+i)= bar z (i-1) is (-1-i)/2 (b) (-1+i)/2 (i(i+1))/2 (d) (-1)/(1+i)