Home
Class 11
MATHS
Show that i^(15)+i^(17)+i^(19)+i^(21)+i...

Show that `i^(15)+i^(17)+i^(19)+i^(21)+i^(24)` is a real number.

Text Solution

AI Generated Solution

The correct Answer is:
To show that \( i^{15} + i^{17} + i^{19} + i^{21} + i^{24} \) is a real number, we will simplify each term using the properties of powers of \( i \). ### Step 1: Identify the pattern of powers of \( i \) The powers of \( i \) cycle every four terms: - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) - \( i^5 = i \) (and so on...) ### Step 2: Calculate each term Now we will calculate each term in the expression based on the cycle: - \( i^{15} = i^{4 \cdot 3 + 3} = (i^4)^3 \cdot i^3 = 1^3 \cdot (-i) = -i \) - \( i^{17} = i^{4 \cdot 4 + 1} = (i^4)^4 \cdot i^1 = 1^4 \cdot i = i \) - \( i^{19} = i^{4 \cdot 4 + 3} = (i^4)^4 \cdot i^3 = 1^4 \cdot (-i) = -i \) - \( i^{21} = i^{4 \cdot 5 + 1} = (i^4)^5 \cdot i^1 = 1^5 \cdot i = i \) - \( i^{24} = i^{4 \cdot 6} = (i^4)^6 = 1^6 = 1 \) ### Step 3: Substitute the calculated values into the expression Now we can substitute these values back into the original expression: \[ i^{15} + i^{17} + i^{19} + i^{21} + i^{24} = -i + i - i + i + 1 \] ### Step 4: Simplify the expression Now, we can simplify the expression: \[ (-i + i) + (-i + i) + 1 = 0 + 0 + 1 = 1 \] ### Conclusion Since \( 1 \) is a real number, we conclude that: \[ i^{15} + i^{17} + i^{19} + i^{21} + i^{24} = 1 \] Thus, \( i^{15} + i^{17} + i^{19} + i^{21} + i^{24} \) is indeed a real number. ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5B|29 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5C|14 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Show that 6i^(50)+5i^(17)-i^(11)+6i^(28) is an imaginary number.

i^(14)+i^(15)+i^(16)+i^(17)=

Show that 1+i^(10)+i^(20)+i^(30) is a real number.

Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)

Find the value of i^(12)+i^(13)+i^(14)+i^(15)

[i^(17)+1/(i^(315))]^(9) is equal to

Find the smallest positive integer value of n for which ((1+i)^n)/((1-i)^(n-2)) is a real number.

Show that (√5+i √2)/(√5-i√2) + (√5-i√2)/(√5+i√2) is real.

Prove that (3+i)/(1+2i)+(3-i)/(1-2i) is a real number.

Show that (1+ 2i)/(3+4i) xx (1-2i)/(3-4i) is real