Home
Class 11
MATHS
Solve the following equations by Sridhar...

Solve the following equations by Sridharacharya's formula :
(i) `x^(2)+x+4=0`
(ii) `2x^(2)-2x+3=0`
(iii) `sqrt(2)x^(2)+x+sqrt(2)=0`
(iv) `x^(2)-x+2=0`
(v) `25x^(2)-30x+11=0`
(vi) `x^(2)+3x+5=0`
(vii) `x^(2)-14x+58=0`
(viii) `x^(2)+13ix -42=0`
(ix) `x^(2)-11ix-30=0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations using Sridharacharya's formula (also known as the quadratic formula), we will follow these steps for each equation: The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Where \( a \), \( b \), and \( c \) are the coefficients from the quadratic equation \( ax^2 + bx + c = 0 \). ### (i) Solve \( x^2 + x + 4 = 0 \) 1. Identify coefficients: - \( a = 1 \) - \( b = 1 \) - \( c = 4 \) 2. Calculate the discriminant: \[ D = b^2 - 4ac = 1^2 - 4 \cdot 1 \cdot 4 = 1 - 16 = -15 \] 3. Since \( D < 0 \), the roots are complex: \[ x = \frac{-1 \pm \sqrt{-15}}{2 \cdot 1} = \frac{-1 \pm i\sqrt{15}}{2} \] ### (ii) Solve \( 2x^2 - 2x + 3 = 0 \) 1. Identify coefficients: - \( a = 2 \) - \( b = -2 \) - \( c = 3 \) 2. Calculate the discriminant: \[ D = (-2)^2 - 4 \cdot 2 \cdot 3 = 4 - 24 = -20 \] 3. Since \( D < 0 \), the roots are complex: \[ x = \frac{2 \pm \sqrt{-20}}{2 \cdot 2} = \frac{2 \pm 2i\sqrt{5}}{4} = \frac{1 \pm i\sqrt{5}}{2} \] ### (iii) Solve \( \sqrt{2}x^2 + x + \sqrt{2} = 0 \) 1. Identify coefficients: - \( a = \sqrt{2} \) - \( b = 1 \) - \( c = \sqrt{2} \) 2. Calculate the discriminant: \[ D = 1^2 - 4 \cdot \sqrt{2} \cdot \sqrt{2} = 1 - 8 = -7 \] 3. Since \( D < 0 \), the roots are complex: \[ x = \frac{-1 \pm \sqrt{-7}}{2\sqrt{2}} = \frac{-1 \pm i\sqrt{7}}{2\sqrt{2}} \] ### (iv) Solve \( x^2 - x + 2 = 0 \) 1. Identify coefficients: - \( a = 1 \) - \( b = -1 \) - \( c = 2 \) 2. Calculate the discriminant: \[ D = (-1)^2 - 4 \cdot 1 \cdot 2 = 1 - 8 = -7 \] 3. Since \( D < 0 \), the roots are complex: \[ x = \frac{1 \pm \sqrt{-7}}{2} = \frac{1 \pm i\sqrt{7}}{2} \] ### (v) Solve \( 25x^2 - 30x + 11 = 0 \) 1. Identify coefficients: - \( a = 25 \) - \( b = -30 \) - \( c = 11 \) 2. Calculate the discriminant: \[ D = (-30)^2 - 4 \cdot 25 \cdot 11 = 900 - 1100 = -200 \] 3. Since \( D < 0 \), the roots are complex: \[ x = \frac{30 \pm \sqrt{-200}}{50} = \frac{30 \pm 10i\sqrt{2}}{50} = \frac{3 \pm i\sqrt{2}}{5} \] ### (vi) Solve \( x^2 + 3x + 5 = 0 \) 1. Identify coefficients: - \( a = 1 \) - \( b = 3 \) - \( c = 5 \) 2. Calculate the discriminant: \[ D = 3^2 - 4 \cdot 1 \cdot 5 = 9 - 20 = -11 \] 3. Since \( D < 0 \), the roots are complex: \[ x = \frac{-3 \pm \sqrt{-11}}{2} = \frac{-3 \pm i\sqrt{11}}{2} \] ### (vii) Solve \( x^2 - 14x + 58 = 0 \) 1. Identify coefficients: - \( a = 1 \) - \( b = -14 \) - \( c = 58 \) 2. Calculate the discriminant: \[ D = (-14)^2 - 4 \cdot 1 \cdot 58 = 196 - 232 = -36 \] 3. Since \( D < 0 \), the roots are complex: \[ x = \frac{14 \pm \sqrt{-36}}{2} = \frac{14 \pm 6i}{2} = 7 \pm 3i \] ### (viii) Solve \( x^2 + 13ix - 42 = 0 \) 1. Identify coefficients: - \( a = 1 \) - \( b = 13i \) - \( c = -42 \) 2. Calculate the discriminant: \[ D = (13i)^2 - 4 \cdot 1 \cdot (-42) = -169 + 168 = -1 \] 3. Since \( D < 0 \), the roots are complex: \[ x = \frac{-13i \pm \sqrt{-1}}{2} = \frac{-13i \pm i}{2} = \frac{-12i}{2} \text{ or } \frac{-14i}{2} = -6i \text{ or } -7i \] ### (ix) Solve \( x^2 - 11ix - 30 = 0 \) 1. Identify coefficients: - \( a = 1 \) - \( b = -11i \) - \( c = -30 \) 2. Calculate the discriminant: \[ D = (-11i)^2 - 4 \cdot 1 \cdot (-30) = -121 - (-120) = -121 + 120 = -1 \] 3. Since \( D < 0 \), the roots are complex: \[ x = \frac{11i \pm \sqrt{-1}}{2} = \frac{11i \pm i}{2} = \frac{12i}{2} \text{ or } \frac{10i}{2} = 6i \text{ or } 5i \]

To solve the equations using Sridharacharya's formula (also known as the quadratic formula), we will follow these steps for each equation: The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Where \( a \), \( b \), and \( c \) are the coefficients from the quadratic equation \( ax^2 + bx + c = 0 \). ### (i) Solve \( x^2 + x + 4 = 0 \) ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5E|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5F|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise EXERCISE 5C|14 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exericse|20 Videos
  • CONIC SECTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Solve each of the following equations by using the formula : (i) 5x^(2)-2x-3=0 (ii) x^(2)=18x-77

Find the roots of the following quadratic equations by factorisation : (i) x^(2)-3x-10=0 (ii) 2x^(2)+x-6=0 (iii) sqrt2x^(2)+7x+5sqrt2=0 (iv) 2x^(2)-x+(1)/(8)=0 (v) 100x^(2)-20x+1=0 (vi) 2x^(2)+az-a^(2)=0

Solve the following equations by factorization method : (i) x^(2)+4=0 (ii) x^(2)+5=0 (iii) 4x^(2) +9=0 (iv) x^(2)-4x+29=0 (v) 4 x^(2) -12x+45 =0

Solve the following quadratic equations : (i) 9x^(2) - 8x+2=0 (ii) sqrt7 x^(2) +x+ sqrt7=0 (iii) 2sqrt3x^(2) -sqrt2 x + 3sqrt3 =0

Find the roots of the following quadratic equations by factorisation: (i) x^2-3x-10=0 (ii) 2x^2-x-6=0 (iii) sqrt(2)x^2+7x+5sqrt(2)=0 (iv) 100 x^2-20 x+1=0 (v) 100 x^2-20 x+1=0

Solve each of following equations, using the formula : (i) x^(2)-6x=27 (ii) x^(2)-10x+21=0 (iii) x^(2)+6x-10=0 (iv) x^(2)+2x-6=0

Solve the following equations by factorization method: x^2-ix+6=0

Find the roots of the quadratic equations by applying the quadratic formula. (i) 2x^2 -7x+3 =0 (ii) 2x^2+x-4 =0 (iii) 4x^2+4sqrt3x+3=0 (iv) 2x^2+x+4 = 0

Determine the nature of roots of the following quadratic equations: (i) 2x^(2)+5x-4=0 (ii) 9x^(2)-6x+1=0 (iii) 3x^(2)+4x+2=0 (iv) x^(2)+2sqrt2x+1=0 (v) x^(2)+x+1=0 (vi) x^(2)+ax-4=0 (vii) 3x^(2)+7x+(1)/(2)=0 (viii) 3x^(2)-4sqrt3x+4=0 (ix) 2sqrt3x^(2)-5x+sqrt3=0 (x) (x-2a)(x-2b)=4ab

Solve the follwing inequations by algebric and graphical methods. i) x^(2) – 8x + 15 gt 0 ii) 2x^(2) + 3x – 2 lt 0 iii) x^(2) - 4x + 5 gt 0 iv) 15x^(2) + 4x – 5 le 0