Home
Class 11
MATHS
Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1...

Prove that: `((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot`

Text Solution

AI Generated Solution

To prove that \[ \frac{(2n)!}{n!} = 1 \cdot 3 \cdot 5 \cdots (2n-1) \cdot 2^n, \] we will start by analyzing the left-hand side (LHS) and simplifying it step by step. ...
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise A|9 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise B|11 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN ENGLISH|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|1 Videos

Similar Questions

Explore conceptually related problems

Prove that ((2n+1)!)/(n !)=2^n{1. 3. 5 .........(2n-1)(2n+1)}

Prove that: \ ^(2n)C_n=(2^n[1. 3. 5 (2n-1)])/(n !)

Prove that : 1+2+3++n=(n(n+1))/2

Prove that (^(2n)C_0)^2-(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Prove that: (1+1/1)(1+1/2)(1+1/3)(1+1/n)=(n+1) for all n in Ndot

Prove that .^n C_0 . ^(2n) C_n- ^n C_1 . ^(2n-2)C_n+^n C_2 . ^(2n-4)C_n-=2^ndot

Using mathematical induction, prove that (1)/(1.3.5) + (2)/(3.5.7) +….+(n)/((2n-1)( 2n+1) ( 2n+3)) =( n(n+1))/( 2(2n+1) (2n+3))

Prove that (1)/(1!(n-1)!) + (1)/(3!(n-3)!)+ (1)/(5!(n-5)!) + …….= (2^(n-1))/(n!)

Prove that log_e ((n^2)/(n^2-1))=1/(n^2)+1/(2n^4)+1/(3n^6)+........oo

If n ge 1 is a positive integer, then prove that 3^(n) ge 2^(n) + n . 6^((n - 1)/(2))