Home
Class 11
MATHS
Prove that: .^(47)C(4) + .^(51)C(3) +^(5...

Prove that: `.^(47)C_(4) + .^(51)C_(3) +^(50)C_(3)+^(49) C_(3) +^(48)C_(3) +^(47)C_(3) =^(52)C_(4)`

Text Solution

Verified by Experts

`L.H.S = .^(47)C_(4) +^(51)C_(3) +^(50)C_(3)+^(49)C_(3) +^(48)C_(3)+^(47)C_(3)`
`= (.^(47)C_(4)+^(47)C_(3))+^(48)C_(3)+^(49)C_(3)+^(50)C_(3)+^(51)C_(3)`
`= .^(48)C_(4) +^(48)C_(3)+^(49)C_(3)+^(50)C_(3)+^(51)C_(3) ( :' .^(n)C_(r) +^(n)C_(r-1)=^(n-1)C_(r))`
`= .^(49)C_(4) +^(49)C_(3)+^(50)C_(3)+^(51)C_(3)`
`= .^(50)C_(4)+^(50)C_(3)+^(51)C_(3)`
`= .^(51)C_(4)+^(51)C_(3)`
`= .^(51)C_(4) = R.H.S`. Hence Proved.
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise A|9 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise B|11 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN ENGLISH|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|1 Videos

Similar Questions

Explore conceptually related problems

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

If a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..", then Value of a^(3) + b^(3) + c^(3) - 3abc is

Prove that: .^2C_1+^3C_1+^4C_1=^5C_3-1

Prove that: 1+^3C_1+^4C_2=^5C_3

1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)=

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + C_(3) x^(3) + C_(4) x^(4) + ..., find the values of (i) C_(0) - C_(2) + C_(4) - C_(0) + … (ii) C_(1) - C_(3) + C_(5) - C_(7) + … (iii) C_(0) + C_(3) + C_(6) + …

Evaluate ^(47)C_(4)+sum_(j=0)^(3)""^(50-j)C_(3)+sum_(k=0)^(5) ""^(56-k)C_(53-k) .

Prove that C_0.C_3 + C_1.C_4 + C_2.C_5 + …..+C_(n-3).C_n = ""^(2n)C_(n +3)

(.^(50)C_(1))^(2)+2(.^(50)C_(2))^(2)+3(.^(50)C_(3))^(2)+.....+50(.^(50)C_(50))^(2)=

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0