Home
Class 11
MATHS
If n = 12, r = 4, then evaluate the foll...

If `n = 12, r = 4`, then evaluate the following:
(i) `(n!)/(r!(n-r)!)` (ii) `(n!)/((n-r+2)!)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will evaluate both parts of the question: Given: - \( n = 12 \) - \( r = 4 \) ### Part (i): Evaluate \( \frac{n!}{r!(n-r)!} \) 1. **Substitute the values of \( n \) and \( r \)**: \[ \frac{n!}{r!(n-r)!} = \frac{12!}{4!(12-4)!} = \frac{12!}{4! \cdot 8!} \] 2. **Express \( 12! \) in terms of \( 8! \)**: \[ 12! = 12 \times 11 \times 10 \times 9 \times 8! \] 3. **Substitute \( 12! \) back into the equation**: \[ \frac{12 \times 11 \times 10 \times 9 \times 8!}{4! \cdot 8!} \] 4. **Cancel \( 8! \) from the numerator and denominator**: \[ = \frac{12 \times 11 \times 10 \times 9}{4!} \] 5. **Calculate \( 4! \)**: \[ 4! = 4 \times 3 \times 2 \times 1 = 24 \] 6. **Now substitute \( 4! \) back into the equation**: \[ = \frac{12 \times 11 \times 10 \times 9}{24} \] 7. **Calculate the numerator**: \[ 12 \times 11 = 132 \] \[ 132 \times 10 = 1320 \] \[ 1320 \times 9 = 11880 \] 8. **Now divide by 24**: \[ = \frac{11880}{24} = 495 \] **Final Answer for Part (i)**: \( 495 \) --- ### Part (ii): Evaluate \( \frac{n!}{(n-r+2)!} \) 1. **Substitute the values of \( n \) and \( r \)**: \[ \frac{n!}{(n-r+2)!} = \frac{12!}{(12-4+2)!} = \frac{12!}{10!} \] 2. **Express \( 12! \) in terms of \( 10! \)**: \[ 12! = 12 \times 11 \times 10! \] 3. **Substitute \( 12! \) back into the equation**: \[ = \frac{12 \times 11 \times 10!}{10!} \] 4. **Cancel \( 10! \) from the numerator and denominator**: \[ = 12 \times 11 \] 5. **Calculate the product**: \[ 12 \times 11 = 132 \] **Final Answer for Part (ii)**: \( 132 \) --- ### Summary of Answers: - (i) \( 495 \) - (ii) \( 132 \)
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise B|11 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise C|24 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|11 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN ENGLISH|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|1 Videos

Similar Questions

Explore conceptually related problems

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Prove that: (i) (.^(n)P_(r))/(.^(n)P_(r-2)) = (n-r+1) (n-r+2)

Prove that: n(n-1)(n-2)....(n-r+1)=(n !)/((n-r)!)

Evaluate : (n!)/((n-r)!) where n=5,r=2

Evaluate (n!)/(r!(n-r)!) , where n=15,r=4

Evaluate (n !)/(r !(n-r)!) , when n = 5, r = 2.

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

Evaluate (n !)/((n-r)!), when (i) n = 6, r = 2 (ii) n = 9, r = 5

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)