Home
Class 11
MATHS
Prove that n! (n+2) = n! +(n+1)!....

Prove that `n! (n+2) = n! +(n+1)!`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise B|11 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise C|24 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|11 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN ENGLISH|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|1 Videos

Similar Questions

Explore conceptually related problems

Prove that (n !)^2 < n^n n! < (2n)! , for all positive integers n.

Prove that : P(n,n)= 2P (n,n -2)

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)

Prove that (n !)^2 < n^n(n !)<(2n)! for all positive integers n

Prove that P(n,n) = P(n,n-1)

Prove that ((n + 1)/(2))^(n) gt n!

If n ge 1 is a positive integer, then prove that 3^(n) ge 2^(n) + n . 6^((n - 1)/(2))

Prove that ((2n+1)!)/(n !)=2^n{1. 3. 5 .........(2n-1)(2n+1)}

Prove that [(n+1)//2]^n >(n !)dot

Prove that (2n!)/( n!) = 1,3,5 ….( 2n-1) 2^(n)