Home
Class 11
MATHS
Find the value of n if (n)/(11!) = (1)/(...

Find the value of n if `(n)/(11!) = (1)/(9!) +(1)/(10!)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{n}{11!} = \frac{1}{9!} + \frac{1}{10!} \), we will follow these steps: ### Step 1: Rewrite the right-hand side We start with the right-hand side of the equation: \[ \frac{1}{9!} + \frac{1}{10!} \] We can express \( \frac{1}{10!} \) in terms of \( 9! \): \[ \frac{1}{10!} = \frac{1}{10 \times 9!} = \frac{1}{10} \cdot \frac{1}{9!} \] Thus, we can rewrite the right-hand side as: \[ \frac{1}{9!} + \frac{1}{10!} = \frac{1}{9!} + \frac{1}{10} \cdot \frac{1}{9!} = \frac{1 + \frac{1}{10}}{9!} = \frac{10 + 1}{10 \cdot 9!} = \frac{11}{10 \cdot 9!} \] ### Step 2: Set the equation Now we can set the equation: \[ \frac{n}{11!} = \frac{11}{10 \cdot 9!} \] ### Step 3: Cross-multiply Cross-multiplying gives us: \[ n \cdot 10 \cdot 9! = 11 \cdot 11! \] ### Step 4: Simplify \( 11! \) We know that \( 11! = 11 \times 10 \times 9! \). Substituting this into our equation: \[ n \cdot 10 \cdot 9! = 11 \cdot (11 \times 10 \times 9!) \] We can cancel \( 9! \) from both sides (assuming \( 9! \neq 0 \)): \[ n \cdot 10 = 11 \cdot 11 \cdot 10 \] ### Step 5: Solve for \( n \) Now we can simplify: \[ n \cdot 10 = 1210 \] Dividing both sides by 10: \[ n = 121 \] ### Final Answer Thus, the value of \( n \) is: \[ \boxed{121} \] ---
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise B|11 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise C|24 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|11 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN ENGLISH|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|1 Videos

Similar Questions

Explore conceptually related problems

Find the value of n if: (n+1)! =12.(n-1)!

find the value of P(n,n-1)

Find the value of n if: 2n! n! =(n+1)(n-1)(!(2n-1)!

Find the value of 1/(81^n)-(10)/(81^n)C_1+(10^2)/(81^n)C_2-(10^3)/(81^n)C_3++(10^(2n))/(81^n) .

Find the value of 1/(81^n)-(10)/(81^n)^(2n)C_1+(10^2)/(81^n)^(2n)C_2-(10^3)/(81^n)^(2n)C_3++(10^(2n))/(81^n) .

Find the value of 1/(81^n)-((10)/(81^n))^(2n)C_1+((10^2)/(81^n))^(2n)C_2-((10^3)/(81^n))^(2n)C_3++(10^(2n))/(81^n) .

Prove that If (1)/(9!) +(1)/( 10!) =(x)/( 11!) , Find x.

Find the sum to infinity of the series . (i) 1+ (2)/(11) + (3)/(121) + (4)/(1331) + … + n((1)/(11))^(n-1) + … (ii) 1 + (4)/(7) + (9)/(49) + (16) / (343) +…+ n^(2) ((1)/(7))^(n-1) +…

Find the value of n from each of the following: (i) 10 .^(n)P_(6) = .^(n+1)P_(3) (ii) 16.^(n)P_(3) = 13 .^(n+1)P_(3)

Find the sum to n terms of the series (1)/(1*3*5*7*9)+(1)/(3*5*7*9*11)+(1)/(5*7*9*11*13)+"......" . Also, find the sum to infinty terms.