Home
Class 11
MATHS
Find the value of n from each of the fol...

Find the value of n from each of the following:
(i) `10 .^(n)P_(6) = .^(n+1)P_(3)`
(ii) `16.^(n)P_(3) = 13 .^(n+1)P_(3)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step. ### Part (i): Solve `10 .^(n)P_(6) = .^(n+1)P_(3)` 1. **Write the Permutation Formula**: The permutation formula is given by: \[ nPr = \frac{n!}{(n-r)!} \] For our case, we have: \[ nP6 = \frac{n!}{(n-6)!} \quad \text{and} \quad (n+1)P3 = \frac{(n+1)!}{(n+1-3)!} = \frac{(n+1)!}{(n-2)!} \] 2. **Set Up the Equation**: Substitute the permutations into the equation: \[ 10 \cdot \frac{n!}{(n-6)!} = \frac{(n+1)!}{(n-2)!} \] 3. **Rearranging the Equation**: Rearranging gives: \[ \frac{(n+1)!}{(n-2)!} = 10 \cdot \frac{n!}{(n-6)!} \] 4. **Express Factorials**: Rewrite the factorials: \[ \frac{(n+1) \cdot n!}{(n-2)!} = 10 \cdot \frac{n!}{(n-6)!} \] Cancel \(n!\) from both sides: \[ \frac{(n+1)}{(n-2)!} = 10 \cdot \frac{1}{(n-6)!} \] 5. **Cross Multiply**: Cross-multiplying gives: \[ (n+1) \cdot (n-6)! = 10 \cdot (n-2)! \] 6. **Expand Factorials**: We know that \((n-2)! = (n-2)(n-3)(n-4)(n-5)(n-6)!\): \[ (n+1)(n-6)! = 10(n-2)(n-3)(n-4)(n-5)(n-6)! \] 7. **Cancel \((n-6)!\)**: Cancel \((n-6)!\) from both sides: \[ n + 1 = 10(n-2)(n-3)(n-4)(n-5) \] 8. **Simplify and Solve**: Expand and simplify: \[ n + 1 = 10(n^4 - 14n^3 + 71n^2 - 140n + 120) \] Rearranging gives: \[ 10n^4 - 140n^3 + 710n^2 - 1450n + 1200 - n - 1 = 0 \] Simplifying further leads to: \[ 10n^4 - 140n^3 + 710n^2 - 1451n + 1199 = 0 \] ### Part (ii): Solve `16.^(n)P_(3) = 13 .^(n+1)P_(3)` 1. **Write the Permutation Formula**: Using the permutation formula again: \[ nP3 = \frac{n!}{(n-3)!} \quad \text{and} \quad (n+1)P3 = \frac{(n+1)!}{(n-2)!} \] 2. **Set Up the Equation**: Substitute into the equation: \[ 16 \cdot \frac{n!}{(n-3)!} = 13 \cdot \frac{(n+1)!}{(n-2)!} \] 3. **Rearranging the Equation**: Rearranging gives: \[ \frac{16n!}{(n-3)!} = 13 \cdot \frac{(n+1) \cdot n!}{(n-2)!} \] 4. **Cancel \(n!\)**: Cancel \(n!\) from both sides: \[ \frac{16}{(n-3)!} = 13 \cdot \frac{(n+1)}{(n-2)!} \] 5. **Cross Multiply**: Cross-multiplying gives: \[ 16(n-2)! = 13(n+1)(n-3)! \] 6. **Expand Factorials**: We know that \((n-2)! = (n-2)(n-3)!\): \[ 16(n-2)(n-3)! = 13(n+1)(n-3)! \] 7. **Cancel \((n-3)!\)**: Cancel \((n-3)!\) from both sides: \[ 16(n-2) = 13(n+1) \] 8. **Solve for n**: Expanding gives: \[ 16n - 32 = 13n + 13 \] Rearranging gives: \[ 3n = 45 \implies n = 15 \] ### Final Answers: - For part (i), the equation leads to a polynomial that can be solved for \(n\). - For part (ii), we find \(n = 15\).
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise C|24 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise D|12 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise A|9 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN ENGLISH|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|1 Videos

Similar Questions

Explore conceptually related problems

If .^(n)C_(5) = .^(n)C_(7) , then find .^(n)P_(3)

find the value of P(n,n-1)

Prove the following: P(n , n)=P(n , n-1)

Find the value of n such that "(i) "^(n)P_(5) =42 xx ""^(n)P_(3), n gt 4 " (ii) "(""^(n)P_(4))/(" "^(n-1)P_(4))=(5)/(3), n gt 4.

Find n if ""^(n-1)P_(3): ""^(n)P_(4) = 1:9 .

if .^(m+n) P_(2)=56 and .^(m-n)P_(3)=24 , then (.^(m)P_(3))/(.^(n)P_(2)) equals

The value of n, if ""^(n)P_(5) = 20.""^(n)P_(3) , is

Find n, if ""^(n)P_(5)=42 ""^(n)P_(3), n ge 5

if .^(2n+1)P_(n-1):^(2n-1)P_(n)=7:10 , then .^(n)P_(3) equals

If .^(n)P_(5)=20 .^(n)P_(3) , find the value of n.