Home
Class 11
MATHS
Find thevalue of 'r': (i) .^(12)P(r) =...

Find thevalue of 'r':
(i) `.^(12)P_(r) = 1320`
(ii) `5.^(4)P_(r) = 6.^(5)P_(r-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems, we will break them down step by step. ### (i) Find the value of 'r' for \( 12P_r = 1320 \) 1. **Understand the formula for permutations**: The formula for permutations is given by: \[ nP_r = \frac{n!}{(n-r)!} \] For our case, \( n = 12 \) and we have: \[ 12P_r = \frac{12!}{(12-r)!} \] Setting this equal to 1320: \[ \frac{12!}{(12-r)!} = 1320 \] 2. **Simplify the equation**: We can rewrite the left-hand side: \[ 12 \times 11 \times 10 \times \ldots \times (12 - r + 1) = 1320 \] This means we need to find the product of \( r \) consecutive numbers starting from 12 downwards. 3. **Testing values for r**: We will test integer values for \( r \) starting from 1 up to 12 to find when the product equals 1320. - For \( r = 1 \): \[ 12P_1 = 12 \quad (\text{not } 1320) \] - For \( r = 2 \): \[ 12P_2 = 12 \times 11 = 132 \quad (\text{not } 1320) \] - For \( r = 3 \): \[ 12P_3 = 12 \times 11 \times 10 = 1320 \quad (\text{this is correct!}) \] 4. **Conclusion for part (i)**: The value of \( r \) is \( 3 \). ### (ii) Find the value of 'r' for \( 5P_r = 6P_{r-1} \) 1. **Write down the permutation formulas**: Using the permutation formula: \[ 5P_r = \frac{5!}{(5-r)!} \quad \text{and} \quad 6P_{r-1} = \frac{6!}{(6-(r-1))!} = \frac{6!}{(7-r)!} \] 2. **Set up the equation**: We can set up the equation: \[ \frac{5!}{(5-r)!} = \frac{6!}{(7-r)!} \] 3. **Cross-multiply**: This gives us: \[ 5! \cdot (7-r)! = 6! \cdot (5-r)! \] 4. **Substituting factorials**: We know \( 6! = 6 \times 5! \), so substituting we get: \[ 5! \cdot (7-r)! = 6 \cdot 5! \cdot (5-r)! \] Dividing both sides by \( 5! \) (assuming \( 5! \neq 0 \)): \[ (7-r)! = 6 \cdot (5-r)! \] 5. **Expanding the factorials**: We can write: \[ (7-r)(6-r)(5-r)! = 6 \cdot (5-r)! \] Dividing both sides by \( (5-r)! \): \[ (7-r)(6-r) = 6 \] 6. **Expanding and rearranging**: Expanding gives: \[ 42 - 13r + r^2 = 6 \] Rearranging gives: \[ r^2 - 13r + 36 = 0 \] 7. **Factoring the quadratic**: We need two numbers that multiply to 36 and add to -13. The factors are: \[ (r - 9)(r - 4) = 0 \] Thus, \( r = 9 \) or \( r = 4 \). 8. **Conclusion for part (ii)**: The values of \( r \) are \( 4 \) and \( 9 \). ### Final Answers: (i) \( r = 3 \) (ii) \( r = 4 \) or \( r = 9 \)
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise C|24 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise D|12 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise A|9 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN ENGLISH|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|1 Videos

Similar Questions

Explore conceptually related problems

Find the value of r, if (i) .^(11)P_(r)=990 (ii) .^(8)P_(5)+5*.^(8)P_(4)=.^(9)P_(r)

Find r, if 5^4P_r=6^5P_(r-1) .

If ""^(12) P_r =1320, find r.

Find r if : .^(10)P_r=2. ^9P_r

If "^12P_r= 11880 , find r.

Prove that ^(n-1) P_r+r .^(n-1) P_(r-1) = .^nP_r

Find r if (i) ""^5P_r=2^6P_(r-1) (ii) ""^5P_r=^6P_(r-1)

If .^(n)P_(r) = 720 and .^(n)C_(r) = 120 , then find r. .

Prove that .^(n-1) P_r+r .^(n-1) P_(r-1) = .^nP_r

The value of sum_(r=1)^(n)(""^(n)P_(r))/(r!) is