Home
Class 11
MATHS
Evaluate: .^(20)C(5)+^(20)C(4)+^(21)C(4)...

Evaluate: `.^(20)C_(5)+^(20)C_(4)+^(21)C_(4)+^(22)C_(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \binom{20}{5} + \binom{20}{4} + \binom{21}{4} + \binom{22}{4} \), we can use properties of combinations. ### Step-by-Step Solution: 1. **Identify the Combinations**: We have the terms \( \binom{20}{5} \), \( \binom{20}{4} \), \( \binom{21}{4} \), and \( \binom{22}{4} \). 2. **Use the Combination Identity**: We can use the identity \( \binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r} \). - First, combine \( \binom{20}{5} \) and \( \binom{20}{4} \): \[ \binom{20}{5} + \binom{20}{4} = \binom{21}{5} \] 3. **Combine with the Next Terms**: Now we have: \[ \binom{21}{5} + \binom{21}{4} \] Using the same identity again: \[ \binom{21}{5} + \binom{21}{4} = \binom{22}{5} \] 4. **Combine with the Last Term**: Now we have: \[ \binom{22}{5} + \binom{22}{4} \] Again applying the identity: \[ \binom{22}{5} + \binom{22}{4} = \binom{23}{5} \] 5. **Calculate \( \binom{23}{5} \)**: Now we need to calculate \( \binom{23}{5} \): \[ \binom{23}{5} = \frac{23!}{5!(23-5)!} = \frac{23!}{5! \cdot 18!} \] This can be simplified as: \[ \binom{23}{5} = \frac{23 \times 22 \times 21 \times 20 \times 19}{5 \times 4 \times 3 \times 2 \times 1} \] 6. **Perform the Calculation**: - Calculate the numerator: \[ 23 \times 22 = 506 \] \[ 506 \times 21 = 10626 \] \[ 10626 \times 20 = 212520 \] \[ 212520 \times 19 = 4037880 \] - Calculate the denominator: \[ 5! = 120 \] - Now divide: \[ \frac{4037880}{120} = 33649 \] ### Final Answer: Thus, the value of \( \binom{20}{5} + \binom{20}{4} + \binom{21}{4} + \binom{22}{4} \) is \( 33649 \).
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise G|34 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise H|10 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise E|8 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN ENGLISH|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|1 Videos

Similar Questions

Explore conceptually related problems

The value of .^(20)C_(0)+.^(20)C_(1)+.^(20)C_(2)+.^(20)C_(3)+.^(20)C_(4)+.^(20)C_(12)+.^(20)C_(13)+.^(20)C_(14)+.^(20)C_(15) is

If a= ^(20)C_(0) + ^(20)C_(3) + ^(20)C_(6) + ^(20)C_(9) + "…..", b = ^(20)C_(1) + ^(20)C_(4) + ^(20)C_(7) + "… and c = ^(20)C_(2) + ^(20)C_(5) + ^(20)C_(8) + "…..", then Value of (a-b)^(2) + (b-c)^(2) + (c-a)^(2) is

If a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..", then Value of a^(3) + b^(3) + c^(3) - 3abc is

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

Evaluate .^10C_4+^10C_5

let 2..^(20)C_(0)+5.^(20)C_(1)+8.^(20)C_(2)+?.+62.^(20)C_(20) . Then sum of this series is

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

NAGEEN PRAKASHAN ENGLISH-PERMUTATION AND COMBINATION -Exercise F
  1. Evaluate the following: (i) .^(10)C(5) (ii) .^(12)C(8) (iii) .^(15...

    Text Solution

    |

  2. Evaluate: .^(20)C(5)+^(20)C(4)+^(21)C(4)+^(22)C(4)

    Text Solution

    |

  3. Prove that: (i) r.^(n)C(r) =(n-r+1).^(n)C(r-1) (ii) n.^(n-1)C(r-1)...

    Text Solution

    |

  4. Find the value of n: (i) .^(n)C(10)=^(n)C(16) (ii) .^(15)C(n) =^(15...

    Text Solution

    |

  5. If .^(n)C(10) = .^(n)C(15), then evaluate .^(27)C(n).

    Text Solution

    |

  6. If .^(18)C(r) = .^(18)C(r+2), then evaluate .^(r)C(5).

    Text Solution

    |

  7. If .^(n)C(5) = .^(n)C(7), then find .^(n)P(3)

    Text Solution

    |

  8. If .^(16)C(r) = .^(16)C(r+6), then find .^(5)C(r).

    Text Solution

    |

  9. Determine n if (i) ^2n C2:^n C2=12 :1 (ii) ^2n C3:^n C3=11 :1

    Text Solution

    |

  10. Determine n if (i) .^(2n) C2: "^n C2=12 :1 (ii) .^(2n) C3: "^n C...

    Text Solution

    |

  11. Determine n if (i) ^2n C2:^n C2=12 :1 (ii) ^2n C3:^n C3=11 :1

    Text Solution

    |

  12. If .^(15)C(r): .^(15)C(r-1) = 1:5, then find r.

    Text Solution

    |

  13. If .^(n-1)P3 :^(n+1)P3 = 5 : 12, find n.

    Text Solution

    |

  14. If .^(n)P(r) = 720 and .^(n)C(r) = 120, then find r. .

    Text Solution

    |

  15. If .^(n+1)C(r+1.): ^nCr: ^(n-1)C(r-1)=11:6:3 find the values of n and ...

    Text Solution

    |

  16. If ""^(n)C(4),""^(n)C(5) and ""^(n)C(6) are in A.P. then the value of ...

    Text Solution

    |

  17. If alpha=\ \ ^m C2,\ then find the value of \ ^(alpha)C2dot

    Text Solution

    |

  18. In how many ways can a team of 11 players be selected from 14 players?

    Text Solution

    |

  19. In how many ways 2 persons can be selected from 4 persons?

    Text Solution

    |

  20. In how many ways can a person invites his 2 or more than 2 friends out...

    Text Solution

    |