Home
Class 11
MATHS
If .^(n)C(5) = .^(n)C(7), then find .^(n...

If `.^(n)C_(5) = .^(n)C_(7)`, then find `.^(n)P_(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \binom{n}{5} = \binom{n}{7} \) and find \( P(n, 3) \), we can follow these steps: ### Step 1: Understand the condition \( \binom{n}{5} = \binom{n}{7} \) From the properties of combinations, we know that if \( \binom{n}{r} = \binom{n}{k} \), then either: 1. \( n = r \) or \( n = k \) 2. \( n = r + k \) In our case, we have \( r = 5 \) and \( k = 7 \). Since \( 5 \neq 7 \), we can use the second condition: \[ n = 5 + 7 \] ### Step 2: Calculate \( n \) Now we can calculate \( n \): \[ n = 5 + 7 = 12 \] ### Step 3: Find \( P(n, 3) \) Now that we have \( n = 12 \), we need to find \( P(12, 3) \). The formula for permutations is given by: \[ P(n, r) = \frac{n!}{(n - r)!} \] Substituting \( n = 12 \) and \( r = 3 \): \[ P(12, 3) = \frac{12!}{(12 - 3)!} = \frac{12!}{9!} \] ### Step 4: Simplify \( P(12, 3) \) We can simplify \( \frac{12!}{9!} \): \[ P(12, 3) = \frac{12 \times 11 \times 10 \times 9!}{9!} \] The \( 9! \) cancels out: \[ P(12, 3) = 12 \times 11 \times 10 \] ### Step 5: Calculate the final value Now we can calculate: \[ 12 \times 11 = 132 \] \[ 132 \times 10 = 1320 \] Thus, the final answer is: \[ P(12, 3) = 1320 \] ### Final Answer: \[ \boxed{1320} \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise G|34 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise H|10 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise E|8 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN ENGLISH|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|1 Videos

Similar Questions

Explore conceptually related problems

If .^(n)C_(8)=.^(n)C_(6) , then find .^(n)C_(2) .

If .^(n)C_(8) = .^(n)C_(2) , find .^(n)C_(2) .

If .^(n)C_(9)=.^(n)C_(7) , find n.

If .^(n)C_(10) = .^(n)C_(15) , then evaluate .^(27)C_(n) .

If .^(n)C_(12) = .^(n)C_(16) , find the value of n

If .^(n)P_(r) = 720 and .^(n)C_(r) = 120 , then find r. .

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

If .^(n)P_(r)=720 and .^(n)C_(r)=120 then find the value of r.

If .^(n)C_(4),.^(n)C_(5), .^(n)C_(6) are in A.P., then find the value of n.

NAGEEN PRAKASHAN ENGLISH-PERMUTATION AND COMBINATION -Exercise F
  1. If .^(n)C(10) = .^(n)C(15), then evaluate .^(27)C(n).

    Text Solution

    |

  2. If .^(18)C(r) = .^(18)C(r+2), then evaluate .^(r)C(5).

    Text Solution

    |

  3. If .^(n)C(5) = .^(n)C(7), then find .^(n)P(3)

    Text Solution

    |

  4. If .^(16)C(r) = .^(16)C(r+6), then find .^(5)C(r).

    Text Solution

    |

  5. Determine n if (i) ^2n C2:^n C2=12 :1 (ii) ^2n C3:^n C3=11 :1

    Text Solution

    |

  6. Determine n if (i) .^(2n) C2: "^n C2=12 :1 (ii) .^(2n) C3: "^n C...

    Text Solution

    |

  7. Determine n if (i) ^2n C2:^n C2=12 :1 (ii) ^2n C3:^n C3=11 :1

    Text Solution

    |

  8. If .^(15)C(r): .^(15)C(r-1) = 1:5, then find r.

    Text Solution

    |

  9. If .^(n-1)P3 :^(n+1)P3 = 5 : 12, find n.

    Text Solution

    |

  10. If .^(n)P(r) = 720 and .^(n)C(r) = 120, then find r. .

    Text Solution

    |

  11. If .^(n+1)C(r+1.): ^nCr: ^(n-1)C(r-1)=11:6:3 find the values of n and ...

    Text Solution

    |

  12. If ""^(n)C(4),""^(n)C(5) and ""^(n)C(6) are in A.P. then the value of ...

    Text Solution

    |

  13. If alpha=\ \ ^m C2,\ then find the value of \ ^(alpha)C2dot

    Text Solution

    |

  14. In how many ways can a team of 11 players be selected from 14 players?

    Text Solution

    |

  15. In how many ways 2 persons can be selected from 4 persons?

    Text Solution

    |

  16. In how many ways can a person invites his 2 or more than 2 friends out...

    Text Solution

    |

  17. In how many ways can 11 players be selected from 14 players if (i) a...

    Text Solution

    |

  18. In how many ways can 5 subjects be chosen from 9 subjects if three sub...

    Text Solution

    |

  19. In how many ways can 4 books be chosen from 12 books if (i) there is...

    Text Solution

    |

  20. A bag contains 5 black and 6 red balls. Determine the number of way...

    Text Solution

    |