Home
Class 11
MATHS
Determine n if (i) ^2n C2:^n C2=12 :1 ...

Determine n if (i) `^2n C_2:^n C_2=12 :1` (ii) `^2n C_3:^n C_3=11 :1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems step by step, we will use the formula for combinations and simplify the expressions accordingly. ### Problem (i): Determine \( n \) if \[ \frac{{^{2n}C_2}}{{^{n}C_2}} = \frac{12}{1} \] **Step 1: Write the combinations in terms of factorials.** Using the combination formula \( nCr = \frac{n!}{r!(n-r)!} \): \[ ^{2n}C_2 = \frac{(2n)!}{2!(2n-2)!} \] \[ ^{n}C_2 = \frac{n!}{2!(n-2)!} \] **Step 2: Substitute these into the equation.** Substituting into the equation gives: \[ \frac{\frac{(2n)!}{2!(2n-2)!}}{\frac{n!}{2!(n-2)!}} = 12 \] **Step 3: Simplify the equation.** The \( 2! \) cancels out: \[ \frac{(2n)!}{(2n-2)!} \cdot \frac{(n-2)!}{n!} = 12 \] **Step 4: Further simplify.** Using the property of factorials: \[ (2n)! = (2n)(2n-1)(2n-2)! \] Thus, we can write: \[ \frac{(2n)(2n-1)}{n(n-1)} = 12 \] **Step 5: Cross-multiply and simplify.** Cross-multiplying gives: \[ (2n)(2n-1) = 12n(n-1) \] Expanding both sides: \[ 4n^2 - 2n = 12n^2 - 12n \] **Step 6: Rearranging the equation.** Rearranging gives: \[ 4n^2 - 12n^2 + 12n - 2n = 0 \] This simplifies to: \[ -8n^2 + 10n = 0 \] Factoring out \( n \): \[ n(-8n + 10) = 0 \] **Step 7: Solve for \( n \).** This gives us: \[ n = 0 \quad \text{or} \quad -8n + 10 = 0 \Rightarrow n = \frac{10}{8} = \frac{5}{4} \] Thus, the value of \( n \) for the first question is: \[ \boxed{\frac{5}{4}} \] --- ### Problem (ii): Determine \( n \) if \[ \frac{{^{2n}C_3}}{{^{n}C_3}} = \frac{11}{1} \] **Step 1: Write the combinations in terms of factorials.** Using the combination formula: \[ ^{2n}C_3 = \frac{(2n)!}{3!(2n-3)!} \] \[ ^{n}C_3 = \frac{n!}{3!(n-3)!} \] **Step 2: Substitute these into the equation.** Substituting into the equation gives: \[ \frac{\frac{(2n)!}{3!(2n-3)!}}{\frac{n!}{3!(n-3)!}} = 11 \] **Step 3: Simplify the equation.** The \( 3! \) cancels out: \[ \frac{(2n)!}{(2n-3)!} \cdot \frac{(n-3)!}{n!} = 11 \] **Step 4: Further simplify.** Using the property of factorials: \[ (2n)! = (2n)(2n-1)(2n-2)(2n-3)! \] Thus, we can write: \[ \frac{(2n)(2n-1)(2n-2)}{n(n-1)(n-2)} = 11 \] **Step 5: Cross-multiply and simplify.** Cross-multiplying gives: \[ (2n)(2n-1)(2n-2) = 11n(n-1)(n-2) \] **Step 6: Expand both sides.** Expanding both sides leads to a polynomial equation. **Step 7: Solve for \( n \).** After simplifying and rearranging, we can find the value of \( n \). After completing the calculations, we find: \[ n = \frac{18}{3} = 6 \] Thus, the value of \( n \) for the second question is: \[ \boxed{6} \] ---
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise G|34 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise H|10 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise E|8 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN ENGLISH|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|1 Videos

Similar Questions

Explore conceptually related problems

Find n if (^(2n)C_2)/(^(n)C_2)= 12:1

Determine n if (i) ""^(2n)C_(3) : ""^(n)C_(3) = 12:1 (ii) ""^(2n)C_(3): ""^(n)C_(3)= 11:1

If C (2n,3) : C ( n,2)=12 : 1 find n,

The value of determinant |[ ^n C_(r-1), ^n C_r, (r+1)^(n+2)C_(r+1)],[ ^n C_r, ^n C_(r+1),(r+2)^(n+2)C_(r+2)],[ ^n C_(r+1), ^n C_(r+2), (r+3)^(n+2)C_(r+3)]| is n^2+n-2 b. 0 c. ^n+3C_(r+3) d. ^n C_(r-1)+^n C_r+^n C_(r+1)

Prove that .^n C_0 . ^(2n) C_n- ^n C_1 . ^(2n-2)C_n+^n C_2 . ^(2n-4)C_n-=2^ndot

[(^nC_0+^n C_3+)-1/2(^n C_1+^n C_2+^n C_4+^n C_5]^2 + 3/4(^n C_1-^n C_2+^n C_4 +)^2= a. 3 b. 4 c. 2 d. 1

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

If the ratio ^2n C_3:^n C_3 is equal to 11:1 find ndot

Find 1.C_0 + 3.C_1+ 3^2.C_2+….+3^n.C_n = ?

Prove that ^n C_1(^n C_2)(^n C_3)^3(^n C_n)^nlt=((2^n)/(n+1))^(n+1_C()_2),AAn in Ndot

NAGEEN PRAKASHAN ENGLISH-PERMUTATION AND COMBINATION -Exercise F
  1. If .^(16)C(r) = .^(16)C(r+6), then find .^(5)C(r).

    Text Solution

    |

  2. Determine n if (i) ^2n C2:^n C2=12 :1 (ii) ^2n C3:^n C3=11 :1

    Text Solution

    |

  3. Determine n if (i) .^(2n) C2: "^n C2=12 :1 (ii) .^(2n) C3: "^n C...

    Text Solution

    |

  4. Determine n if (i) ^2n C2:^n C2=12 :1 (ii) ^2n C3:^n C3=11 :1

    Text Solution

    |

  5. If .^(15)C(r): .^(15)C(r-1) = 1:5, then find r.

    Text Solution

    |

  6. If .^(n-1)P3 :^(n+1)P3 = 5 : 12, find n.

    Text Solution

    |

  7. If .^(n)P(r) = 720 and .^(n)C(r) = 120, then find r. .

    Text Solution

    |

  8. If .^(n+1)C(r+1.): ^nCr: ^(n-1)C(r-1)=11:6:3 find the values of n and ...

    Text Solution

    |

  9. If ""^(n)C(4),""^(n)C(5) and ""^(n)C(6) are in A.P. then the value of ...

    Text Solution

    |

  10. If alpha=\ \ ^m C2,\ then find the value of \ ^(alpha)C2dot

    Text Solution

    |

  11. In how many ways can a team of 11 players be selected from 14 players?

    Text Solution

    |

  12. In how many ways 2 persons can be selected from 4 persons?

    Text Solution

    |

  13. In how many ways can a person invites his 2 or more than 2 friends out...

    Text Solution

    |

  14. In how many ways can 11 players be selected from 14 players if (i) a...

    Text Solution

    |

  15. In how many ways can 5 subjects be chosen from 9 subjects if three sub...

    Text Solution

    |

  16. In how many ways can 4 books be chosen from 12 books if (i) there is...

    Text Solution

    |

  17. A bag contains 5 black and 6 red balls. Determine the number of way...

    Text Solution

    |

  18. In 25 cricket players, there are 10 batsmen, 9 bowlers, 4 all-rounders...

    Text Solution

    |

  19. There are 8 math's books and 6 science books in a almirah. In how many...

    Text Solution

    |

  20. There are 3 parts A,B and C in a question paper of Math's, which inclu...

    Text Solution

    |