Home
Class 11
MATHS
If P(n,6) = 30. P(n,4) then n = ?...

If `P(n,6) = 30. P(n,4)` then `n = ?`

A

10

B

9

C

8

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( P(n, 6) = 30 \cdot P(n, 4) \), we will use the formula for permutations, which states: \[ P(n, k) = \frac{n!}{(n-k)!} \] ### Step-by-Step Solution: 1. **Write the permutation expressions**: \[ P(n, 6) = \frac{n!}{(n-6)!} \] \[ P(n, 4) = \frac{n!}{(n-4)!} \] 2. **Substitute into the equation**: \[ \frac{n!}{(n-6)!} = 30 \cdot \frac{n!}{(n-4)!} \] 3. **Cancel \( n! \) from both sides** (assuming \( n! \neq 0 \)): \[ \frac{1}{(n-6)!} = 30 \cdot \frac{1}{(n-4)!} \] 4. **Rewrite the right-hand side**: \[ \frac{1}{(n-6)!} = \frac{30}{(n-4)(n-5)(n-6)!} \] 5. **Multiply both sides by \( (n-6)! \)**: \[ 1 = \frac{30}{(n-4)(n-5)} \] 6. **Cross-multiply**: \[ (n-4)(n-5) = 30 \] 7. **Expand the left-hand side**: \[ n^2 - 9n + 20 = 30 \] 8. **Rearrange the equation**: \[ n^2 - 9n - 10 = 0 \] 9. **Factor the quadratic equation**: \[ (n - 10)(n + 1) = 0 \] 10. **Solve for \( n \)**: \[ n - 10 = 0 \quad \Rightarrow \quad n = 10 \] \[ n + 1 = 0 \quad \Rightarrow \quad n = -1 \] 11. **Determine valid solutions**: Since \( n \) must be a non-negative integer (as factorials for negative integers do not exist), we discard \( n = -1 \). Thus, the final answer is: \[ \boxed{10} \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise I|10 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 1|6 Videos
  • PERMUTATION AND COMBINATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise G|34 Videos
  • MATHEMATICAL REASONING

    NAGEEN PRAKASHAN ENGLISH|Exercise Misellaneous exercise|7 Videos
  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|1 Videos

Similar Questions

Explore conceptually related problems

If 5 P(n, 4)=6 P(n ,3) n?

If P(n ,4)=20xxP(n ,2), then find the value of n

If P(n-1,\ 3): P(n ,4)=1:9 find n

If P(n ,4)=20 x P(n ,2),find n.

If P(n ,4)=20xxP(n ,2), find n.

If P(n ,4)=18xxP(n ,3), find n

If P(n ,5): P(n ,3)=2:1 find n

If P_(n) = cos^(n) theta + sin^(n) theta 6P_(10) -15P_(8) + 10P_(6) is equal to

If P_(n) denotes the product of all the coefficients of (1+x)^(n) and 9!P_(n+1)=10^(9)P_(n) then n is equal to

If n(P) = n(M), then P → M.