Home
Class 11
MATHS
Simplify with the help of binomial theor...

Simplify with the help of binomial theorm. (x+1)^5 + (x-1)^5

Text Solution

Verified by Experts

The correct Answer is:
N/a

`(x+1)^(5)=overset(5)underset(r=0)(Sigma).^(5)C_(r)x^(5-r).1^(r) =overset(5)underset(r=0)(Sigma).^(5)C_(r).x^(5-r)`
`rArr(x+1)^(5)=^(5)C_(0)x^(5)+^(5)C_(1).x^(4)+^(5)C_(2)x^(3)`
`+^(5)C_(3)x^(2)+^(5)C_(4)x+^(5)C_(5).....(i)`
`" and "(x-1)^(5)=overset(5)underset(r=0)(Sigma).^(5)C_(r)x^(5-r)(-1)^(r)`
`=^(5)C_(0)C^(5)+^(5)C_(1)x^(4).(-1)^(1)`
`+^(5)C_(2)x^(3)(-1)^(2)+^(5)C_(3)x^(2).(-1)^(3)`
`+^(5)C_(4)x(-1)^(4)+^(5)C_(5)(-1)^(5)`
`(x-1)^(5)=^(5)C_(0)x^(5)-^(5)C_(1)x^(4)+^(5)C_(2)x^(3)-^(5)C_(3)x^(2)`
`+^(5)C_(4).x-^(5)C_(5)......(2)`
Adding eqs. (1) and (2) we get .
`(x+1)^(5)+(x-1)^(5)=2[^(5)C_(0)x^(5)+^(5)C_(2)x^(3)+^(5)C_(4).x]`
`=2[1.x^(5)+10.x^(3)+5.x]`
`=2[x^(5)+10x^(3)+5x).`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8A|22 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8B|38 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

Expand the following by binomial theorem: (x+y)^5

Expand the following by binomial theorem: (1-2x)^5

Using binomial theorem compute : (10. 1)^5

Expand the following by binomial theorem: (1-x)^6

Expand the following by binomial theorem: (x/3+1/x)^5

Simplify: (i) (1)^5 (ii) (-1)^5

Simplify and write the answer in the exponential form : (2^5-:2^8)^5"x"\ 2^(-5) (ii) \ (-4)^3"x"\ (5)^(-3)"x"\ (-5)^(-3) (iii) 1/8"x"\ 3^(-3)

Use binomial theorem to evaluate (10.1)^(5) .

Using binomial theorem, expand [ ( x+y)^(5) + (x-y)^(5) ] and hence find the value of [ ( sqrt(3) + 1)^(5) - ( sqrt(3) - 1)^(5) ] .

Simplify: 8 1/4-\ 2 5/6

NAGEEN PRAKASHAN ENGLISH-BINOMIAL THEOREM-Miscellaneous Exericse
  1. Simplify with the help of binomial theorm. (x+1)^5 + (x-1)^5

    Text Solution

    |

  2. Find a, b and n in the expansion of (a+b)^nif the first three terms ...

    Text Solution

    |

  3. If the coefficients of x^2a n d\ x^3 in the expansion o (3+a x)^9 are ...

    Text Solution

    |

  4. Find the coefficient of a^4 in the product (1+a)^4(2-a)^5 using binomi...

    Text Solution

    |

  5. If a and b are distinct integers, prove that a - b is a factor of a^n-...

    Text Solution

    |

  6. Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

    Text Solution

    |

  7. Find the value of (a^2+sqrt(a^2-1))^4+(a^2-sqrt(a^2-1))^4.

    Text Solution

    |

  8. Find an approximation of (0. 99)^5 using the first three terms of its ...

    Text Solution

    |

  9. Find n, if the ratio of the fifth term from the beginning to the fi...

    Text Solution

    |

  10. Using binomial theorem expand (1+x/2-2/x)^4,\ x!=0.

    Text Solution

    |

  11. Find the expansion of (3x^2-2a x+3a^2)^3 using binomial theorem.

    Text Solution

    |

  12. Find a, b and n in the expansion of (a+b)^nif the first three terms ...

    Text Solution

    |

  13. If the coefficients of x^2a n d\ x^3 in the expansion o (3+a x)^9 are ...

    Text Solution

    |

  14. Find the coefficient of x^5 in the expansion of (1 + 2x)^6 (1-x)^7.

    Text Solution

    |

  15. If a and b are distinct integers, prove that a - b is a factor of a^n-...

    Text Solution

    |

  16. Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

    Text Solution

    |

  17. Find the value of (a^2+sqrt(a^2-1))^4+(a^2-sqrt(a^2-1))^4.

    Text Solution

    |

  18. Find an approximation of (0. 99)^5using the first three terms of its ...

    Text Solution

    |

  19. Find n, if the ratio of the fifth term from the beginning to the fi...

    Text Solution

    |

  20. Expand using Binomial Theorem (1+x/2-2/x)^4,x!=0.

    Text Solution

    |

  21. Find the expansion of (3x^2-2a x+3a^2)^3 using binomial theorem.

    Text Solution

    |