Home
Class 11
MATHS
Evaluate : 1+^(15)C(1)+^(15)C(2)+^(15)...

Evaluate :
`1+^(15)C_(1)+^(15)C_(2)+^(15)C_(3)+......+^(15)C_(15)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(1 + \binom{15}{1} + \binom{15}{2} + \binom{15}{3} + \ldots + \binom{15}{15}\), we can use the Binomial Theorem. ### Step-by-Step Solution: 1. **Understanding the Binomial Theorem**: The Binomial Theorem states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] For our case, we can set \(a = 1\) and \(b = 1\), and \(n = 15\). 2. **Applying the Binomial Theorem**: By substituting \(a\) and \(b\) into the theorem, we have: \[ (1 + 1)^{15} = \sum_{k=0}^{15} \binom{15}{k} 1^{15-k} 1^k \] This simplifies to: \[ 2^{15} = \sum_{k=0}^{15} \binom{15}{k} \] 3. **Identifying the Terms**: The sum on the right-hand side includes all the binomial coefficients from \(k = 0\) to \(k = 15\): \[ \sum_{k=0}^{15} \binom{15}{k} = \binom{15}{0} + \binom{15}{1} + \binom{15}{2} + \ldots + \binom{15}{15} \] 4. **Separating the First Term**: We can separate the first term from the sum: \[ 1 + \binom{15}{1} + \binom{15}{2} + \ldots + \binom{15}{15} = \sum_{k=0}^{15} \binom{15}{k} \] 5. **Final Calculation**: Thus, we have: \[ 1 + \binom{15}{1} + \binom{15}{2} + \ldots + \binom{15}{15} = 2^{15} \] 6. **Evaluating \(2^{15}\)**: Now, we calculate \(2^{15}\): \[ 2^{15} = 32768 \] ### Conclusion: The value of the expression \(1 + \binom{15}{1} + \binom{15}{2} + \ldots + \binom{15}{15}\) is \(32768\).

To evaluate the expression \(1 + \binom{15}{1} + \binom{15}{2} + \binom{15}{3} + \ldots + \binom{15}{15}\), we can use the Binomial Theorem. ### Step-by-Step Solution: 1. **Understanding the Binomial Theorem**: The Binomial Theorem states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8A|22 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8B|38 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

Find the sum of the following (""^(15)C_(1))/(""^(15)C_(0))+2(""^(15)C_(2))/(""^(15)C_(1))+3(""^(15)C_(3))/(""^(15)C_(2))+......+15(""^(15)C_(15))/(""^(15)C_(14))

The value of .^(15)C_(0)^(2)-.^(15)C_(1)^(2)+.^(15)C_(2)^(2)-"...."-.^(15)C_(15)^(2) is a. 15 b. -15 c. 0 d. 51

Evaluate: c. 4 (11)/(15) - 2 (7)/(20)

Find the value of n: (i) .^(n)C_(10)=^(n)C_(16) (ii) .^(15)C_(n) =^(15)C_(n+3) (iii) .^(10)C_(n) =^(10)C_(n+2) (iv) .^(25)C_(3n) =.^(25)C_(n+1) (v) .^(n)C_(r) =.^(n)C_(r-2)

If .^(15)C_(3r)=.^(15)C_(r+3), find .^(r)C_(2) .

""^(15)C_(9)-_""^(15)C_(6)+""^(15)C_(7)-^(15)C_(8) equals to

""^(15)C_(8) + ""^(15)C_(9) - ""^(15)C_(6) - ""^(15)C_(7) is equal to ………. .

Evaluate C(15,14)

Evaluate the following: (i) .^(10)C_(5) (ii) .^(12)C_(8) (iii) .^(15)C_(12) (iv) .^(n+1)C_(n) (v) .^(14)C_(9)

With usual notations prove that C_1/C_0 + 2. C_2/C_1 + 3.C_3/C_2 + ……+n.(C_n)/(C_(n-1)) = (n(n +1))/(2) Hence prove that (15C_1)/(15C_0) + 2.(15C_2)/(15C_1) + 3. (15C_3)/(15C_2) +……..+ 15. (15C_15)/(15C_14) = 120

NAGEEN PRAKASHAN ENGLISH-BINOMIAL THEOREM-Miscellaneous Exericse
  1. Evaluate : 1+^(15)C(1)+^(15)C(2)+^(15)C(3)+......+^(15)C(15)

    Text Solution

    |

  2. Find a, b and n in the expansion of (a+b)^nif the first three terms ...

    Text Solution

    |

  3. If the coefficients of x^2a n d\ x^3 in the expansion o (3+a x)^9 are ...

    Text Solution

    |

  4. Find the coefficient of a^4 in the product (1+a)^4(2-a)^5 using binomi...

    Text Solution

    |

  5. If a and b are distinct integers, prove that a - b is a factor of a^n-...

    Text Solution

    |

  6. Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

    Text Solution

    |

  7. Find the value of (a^2+sqrt(a^2-1))^4+(a^2-sqrt(a^2-1))^4.

    Text Solution

    |

  8. Find an approximation of (0. 99)^5 using the first three terms of its ...

    Text Solution

    |

  9. Find n, if the ratio of the fifth term from the beginning to the fi...

    Text Solution

    |

  10. Using binomial theorem expand (1+x/2-2/x)^4,\ x!=0.

    Text Solution

    |

  11. Find the expansion of (3x^2-2a x+3a^2)^3 using binomial theorem.

    Text Solution

    |

  12. Find a, b and n in the expansion of (a+b)^nif the first three terms ...

    Text Solution

    |

  13. If the coefficients of x^2a n d\ x^3 in the expansion o (3+a x)^9 are ...

    Text Solution

    |

  14. Find the coefficient of x^5 in the expansion of (1 + 2x)^6 (1-x)^7.

    Text Solution

    |

  15. If a and b are distinct integers, prove that a - b is a factor of a^n-...

    Text Solution

    |

  16. Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

    Text Solution

    |

  17. Find the value of (a^2+sqrt(a^2-1))^4+(a^2-sqrt(a^2-1))^4.

    Text Solution

    |

  18. Find an approximation of (0. 99)^5using the first three terms of its ...

    Text Solution

    |

  19. Find n, if the ratio of the fifth term from the beginning to the fi...

    Text Solution

    |

  20. Expand using Binomial Theorem (1+x/2-2/x)^4,x!=0.

    Text Solution

    |

  21. Find the expansion of (3x^2-2a x+3a^2)^3 using binomial theorem.

    Text Solution

    |