Home
Class 11
MATHS
If C0, C1,C2 ..., Cn, denote the binom...

If `C_0, C_1,C_2 ..., C_n`, denote the binomial coefficients in the expansion of `(1 + x)^n`, then `C_1/2+C_3/4+C_5/6+......` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the sum \( \frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \ldots \) where \( C_k \) are the binomial coefficients from the expansion of \( (1 + x)^n \). ### Step-by-Step Solution: 1. **Write the Binomial Expansion**: The binomial expansion of \( (1 + x)^n \) is given by: \[ (1 + x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \ldots + C_n x^n \] where \( C_k = \binom{n}{k} \). 2. **Integrate Both Sides**: We will integrate both sides with respect to \( x \): \[ \int (1 + x)^n \, dx = \int (C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \ldots + C_n x^n) \, dx \] The left side becomes: \[ \frac{(1 + x)^{n+1}}{n + 1} + C \] The right side becomes: \[ C_0 x + \frac{C_1 x^2}{2} + \frac{C_2 x^3}{3} + \frac{C_3 x^4}{4} + \ldots + \frac{C_n x^{n+1}}{n + 1} \] 3. **Evaluate at \( x = 1 \)**: Substituting \( x = 1 \): \[ \frac{(1 + 1)^{n + 1}}{n + 1} = \frac{2^{n + 1}}{n + 1} \] The right side becomes: \[ C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \frac{C_3}{4} + \ldots + \frac{C_n}{n + 1} \] 4. **Evaluate at \( x = -1 \)**: Now substituting \( x = -1 \): \[ \frac{(1 - 1)^{n + 1}}{n + 1} = 0 \] The right side becomes: \[ C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \frac{C_3}{4} + \ldots + (-1)^n \frac{C_n}{n + 1} \] 5. **Add the Two Results**: Now, we add the results from steps 3 and 4: \[ \frac{2^{n + 1}}{n + 1} + 0 = C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \frac{C_3}{4} + \ldots + \frac{C_n}{n + 1} + C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \frac{C_3}{4} + \ldots + (-1)^n \frac{C_n}{n + 1} \] The terms involving \( C_1, C_3, \ldots \) cancel out, leading to: \[ \frac{2^{n + 1}}{n + 1} = 2 \left( \frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \ldots \right) \] 6. **Solve for the Desired Sum**: Dividing both sides by 2 gives: \[ \frac{2^{n}}{n + 1} = \frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \ldots \] Thus, the final answer is: \[ \frac{2^n}{n + 1} \]

To solve the problem, we need to find the value of the sum \( \frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \ldots \) where \( C_k \) are the binomial coefficients from the expansion of \( (1 + x)^n \). ### Step-by-Step Solution: 1. **Write the Binomial Expansion**: The binomial expansion of \( (1 + x)^n \) is given by: \[ (1 + x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \ldots + C_n x^n ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8A|22 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8B|38 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

If C_o, C_1, C_2 ....,C_n C denote the binomial coefficients in the expansion of (1 + x)^n, then 1^3. C_1 + 2^3 . C_2 + 3^3 .C_3 + ... + n^3 .C_n, =

If C_0,C_1,C_2..C_n denote the coefficients in the binomial expansion of (1 +x)^n , then C_0 + 2.C_1 +3.C_2+. (n+1) C_n

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_0,C_1,C_2,.......,C_n denote the binomial coefficients in the expansion of (1+1)^n, then sum_(0ler) sum_(< s le n) (C_r+C_s)

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0),C_(1), C_(2),...,C_(N) denote the binomial coefficients in the expansion of (1 + x)^(n) , then 1^(3). C_(1)-2^(3). C_(3) - 4^(3) . C_(4) + ...+ (-1)^(n-1)n^(3) C_(n)=

If C_o C_1, C_2,.......,C_n denote the binomial coefficients in the expansion of (1 + x)^n , then the value of sum_(r=0)^n (r + 1) C_r is

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then 1^(2).C_(1) + 2^(2) + 3^(3).C_(3) + ...+n^(2).C_(n)= .

NAGEEN PRAKASHAN ENGLISH-BINOMIAL THEOREM-Miscellaneous Exericse
  1. If C0, C1,C2 ..., Cn, denote the binomial coefficients in the expans...

    Text Solution

    |

  2. Find a, b and n in the expansion of (a+b)^nif the first three terms ...

    Text Solution

    |

  3. If the coefficients of x^2a n d\ x^3 in the expansion o (3+a x)^9 are ...

    Text Solution

    |

  4. Find the coefficient of a^4 in the product (1+a)^4(2-a)^5 using binomi...

    Text Solution

    |

  5. If a and b are distinct integers, prove that a - b is a factor of a^n-...

    Text Solution

    |

  6. Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

    Text Solution

    |

  7. Find the value of (a^2+sqrt(a^2-1))^4+(a^2-sqrt(a^2-1))^4.

    Text Solution

    |

  8. Find an approximation of (0. 99)^5 using the first three terms of its ...

    Text Solution

    |

  9. Find n, if the ratio of the fifth term from the beginning to the fi...

    Text Solution

    |

  10. Using binomial theorem expand (1+x/2-2/x)^4,\ x!=0.

    Text Solution

    |

  11. Find the expansion of (3x^2-2a x+3a^2)^3 using binomial theorem.

    Text Solution

    |

  12. Find a, b and n in the expansion of (a+b)^nif the first three terms ...

    Text Solution

    |

  13. If the coefficients of x^2a n d\ x^3 in the expansion o (3+a x)^9 are ...

    Text Solution

    |

  14. Find the coefficient of x^5 in the expansion of (1 + 2x)^6 (1-x)^7.

    Text Solution

    |

  15. If a and b are distinct integers, prove that a - b is a factor of a^n-...

    Text Solution

    |

  16. Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

    Text Solution

    |

  17. Find the value of (a^2+sqrt(a^2-1))^4+(a^2-sqrt(a^2-1))^4.

    Text Solution

    |

  18. Find an approximation of (0. 99)^5using the first three terms of its ...

    Text Solution

    |

  19. Find n, if the ratio of the fifth term from the beginning to the fi...

    Text Solution

    |

  20. Expand using Binomial Theorem (1+x/2-2/x)^4,x!=0.

    Text Solution

    |

  21. Find the expansion of (3x^2-2a x+3a^2)^3 using binomial theorem.

    Text Solution

    |