Home
Class 10
MATHS
If alpha,beta gamma are the zeroes of po...

If `alpha,beta` gamma are the zeroes of polynomial f(x)`=(x-1)(x^(2)+x+3)`, then find the value of `alpha^(3)+beta^(3)+gamma^(3)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \alpha^3 + \beta^3 + \gamma^3 \) where \( \alpha, \beta, \gamma \) are the zeroes of the polynomial \( f(x) = (x-1)(x^2 + x + 3) \), we can follow these steps: ### Step 1: Expand the Polynomial We start by expanding the polynomial \( f(x) \): \[ f(x) = (x-1)(x^2 + x + 3) \] Using the distributive property (FOIL method): \[ f(x) = x(x^2 + x + 3) - 1(x^2 + x + 3) \] \[ = x^3 + x^2 + 3x - (x^2 + x + 3) \] \[ = x^3 + x^2 + 3x - x^2 - x - 3 \] \[ = x^3 + (1 - 1)x^2 + (3 - 1)x - 3 \] \[ = x^3 + 2x - 3 \] ### Step 2: Identify Coefficients From the polynomial \( f(x) = x^3 + 2x - 3 \), we can identify the coefficients: - \( a = 1 \) (coefficient of \( x^3 \)) - \( b = 0 \) (coefficient of \( x^2 \)) - \( c = 2 \) (coefficient of \( x \)) - \( d = -3 \) (constant term) ### Step 3: Use the Relationships of Roots Using Vieta's formulas: - The sum of the roots \( \alpha + \beta + \gamma = -\frac{b}{a} = -\frac{0}{1} = 0 \) - The sum of the products of the roots taken two at a time \( \alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = \frac{2}{1} = 2 \) - The product of the roots \( \alpha\beta\gamma = -\frac{d}{a} = -\frac{-3}{1} = 3 \) ### Step 4: Calculate \( \alpha^3 + \beta^3 + \gamma^3 \) We can use the identity: \[ \alpha^3 + \beta^3 + \gamma^3 = (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha) + 3\alpha\beta\gamma \] Since \( \alpha + \beta + \gamma = 0 \), the first term becomes zero: \[ \alpha^3 + \beta^3 + \gamma^3 = 0 \cdot (\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha) + 3\alpha\beta\gamma \] \[ = 0 + 3 \cdot 3 = 9 \] ### Final Result Thus, the value of \( \alpha^3 + \beta^3 + \gamma^3 \) is: \[ \alpha^3 + \beta^3 + \gamma^3 = 9 \]

To find the value of \( \alpha^3 + \beta^3 + \gamma^3 \) where \( \alpha, \beta, \gamma \) are the zeroes of the polynomial \( f(x) = (x-1)(x^2 + x + 3) \), we can follow these steps: ### Step 1: Expand the Polynomial We start by expanding the polynomial \( f(x) \): \[ f(x) = (x-1)(x^2 + x + 3) \] ...
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Problems From NCERT/ Exemplar|11 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 2a|28 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer/short Answer Questions|16 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are zeroes of polynomial 6x^(3)+3x^(2)-5x+1 , then find the value of alpha^(-1)+beta^(-1)+gamma^(-1) .

If alpha,beta gamma are zeroes of cubic polynomial x^(3)+5x-2 , then find the value of alpha^(3)+beta^(3)+gamma^(3) .

If alpha,beta are zeroes of polynomial f(x) =x^(2)-p(x+1)-c , then find the value of (alpha+1)(beta+1) .

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha and beta are zeroes of the quadratic polynomial f(x) =3x^(2)-5x-2 , then find the value of ((alpha^(2))/(beta)+(beta^(2))/(alpha))+6(alpha+1)(beta+1) .

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^2+x-2, find the value of 1/alpha-1/beta

If alpha and beta are zeroes of the polynomial 3x^(2)+6x+1 , then find the value of alpha+beta+alpha beta .

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of alpha^(2)beta+alpha^(2)gamma+beta^(2)alpha+beta^(2)gamma+gamma^(2)alpha+gamma^(2)beta is equal to

If alpha, beta, gamma are the roots of x^(3)+ax+b=0 , then find the value of alpha^(3)+beta^(3)+gamma^(3) .

If alpha and beta are the zeros of the quadratic polynomial f(x)=6x^2+x-2 , find the value of alpha/beta+beta/alpha .