Home
Class 10
MATHS
If alpha and beta are zeroes of x^(2)-5x...

If `alpha` and `beta` are zeroes of `x^(2)-5x+6`, then find the value of `alpha^(2)+beta^(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha^2 + \beta^2 \) given that \( \alpha \) and \( \beta \) are the roots (zeroes) of the polynomial \( x^2 - 5x + 6 \). ### Step-by-step Solution: 1. **Identify the polynomial**: The given polynomial is \( x^2 - 5x + 6 \). 2. **Use Vieta's formulas**: According to Vieta's formulas, for a quadratic polynomial of the form \( ax^2 + bx + c \): - The sum of the roots \( \alpha + \beta = -\frac{b}{a} \) - The product of the roots \( \alpha \beta = \frac{c}{a} \) Here, \( a = 1 \), \( b = -5 \), and \( c = 6 \). 3. **Calculate the sum of the roots**: \[ \alpha + \beta = -\frac{-5}{1} = \frac{5}{1} = 5 \] 4. **Calculate the product of the roots**: \[ \alpha \beta = \frac{6}{1} = 6 \] 5. **Use the identity for the sum of squares**: We know that: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] 6. **Substitute the values**: - We have \( \alpha + \beta = 5 \) and \( \alpha \beta = 6 \). \[ \alpha^2 + \beta^2 = (5)^2 - 2 \times 6 \] 7. **Calculate**: \[ \alpha^2 + \beta^2 = 25 - 12 = 13 \] 8. **Final answer**: \[ \alpha^2 + \beta^2 = 13 \]

To solve the problem, we need to find the value of \( \alpha^2 + \beta^2 \) given that \( \alpha \) and \( \beta \) are the roots (zeroes) of the polynomial \( x^2 - 5x + 6 \). ### Step-by-step Solution: 1. **Identify the polynomial**: The given polynomial is \( x^2 - 5x + 6 \). 2. **Use Vieta's formulas**: According to Vieta's formulas, for a quadratic polynomial of the form \( ax^2 + bx + c \): - The sum of the roots \( \alpha + \beta = -\frac{b}{a} \) ...
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|4 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer Questions|11 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer/short Answer Questions|16 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are zeroes of 5x^(2)-7x+1 , then find the value of (1)/(alpha)+(1)/(beta) .

If alpha and beta are zeroes of 8x^(2)-6x+1 , then find the value of (1)/(alpha)+(1)/(beta) .

If alpha and beta are the roots of 2x^(2) + 5x - 4 = 0 then find the value of (alpha)/(beta) + (beta)/(alpha) .

If alpha and beta are zeroes of the polynomial 3x^(2)+6x+1 , then find the value of alpha+beta+alpha beta .

If alpha,beta are roots of x^(2)-px+q=0 , find the value of (i) alpha^(2)+beta^(2) (ii) alpha^(3)+beta^(3) (iii) alpha-beta , (iv) alpha^(4)+beta^(4) .

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

Let alpha and beta be the roots of x^2 - 5x - 1 = 0 then find the value of (alpha^15 + alpha^11 + beta^15 + beta^11)/(alpha^13 + beta^13) .

If alpha,beta are zeroes of polynomial f(x) =x^(2)-p(x+1)-c , then find the value of (alpha+1)(beta+1) .

If alpha,beta gamma are zeroes of cubic polynomial x^(3)+5x-2 , then find the value of alpha^(3)+beta^(3)+gamma^(3) .