Home
Class 10
MATHS
If alpha and beta are zeroes of 8x^(2)-6...

If `alpha` and `beta` are zeroes of `8x^(2)-6x+1`, then find the value of `(1)/(alpha)+(1)/(beta)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \frac{1}{\alpha} + \frac{1}{\beta} \) where \( \alpha \) and \( \beta \) are the zeros of the polynomial \( 8x^2 - 6x + 1 \), we can follow these steps: ### Step 1: Identify coefficients The given polynomial is \( 8x^2 - 6x + 1 \). Here, we can identify the coefficients: - \( a = 8 \) - \( b = -6 \) - \( c = 1 \) ### Step 2: Calculate the sum of the zeros The sum of the zeros \( \alpha + \beta \) can be calculated using the formula: \[ \alpha + \beta = -\frac{b}{a} \] Substituting the values of \( b \) and \( a \): \[ \alpha + \beta = -\frac{-6}{8} = \frac{6}{8} = \frac{3}{4} \] ### Step 3: Calculate the product of the zeros The product of the zeros \( \alpha \beta \) can be calculated using the formula: \[ \alpha \beta = \frac{c}{a} \] Substituting the values of \( c \) and \( a \): \[ \alpha \beta = \frac{1}{8} \] ### Step 4: Calculate \( \frac{1}{\alpha} + \frac{1}{\beta} \) Using the relationship: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} \] Substituting the values we found: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\frac{3}{4}}{\frac{1}{8}} \] ### Step 5: Simplify the expression To simplify \( \frac{\frac{3}{4}}{\frac{1}{8}} \), we multiply by the reciprocal: \[ \frac{3}{4} \times 8 = \frac{3 \times 8}{4} = \frac{24}{4} = 6 \] ### Conclusion Thus, the value of \( \frac{1}{\alpha} + \frac{1}{\beta} \) is \( 6 \). ---

To find the value of \( \frac{1}{\alpha} + \frac{1}{\beta} \) where \( \alpha \) and \( \beta \) are the zeros of the polynomial \( 8x^2 - 6x + 1 \), we can follow these steps: ### Step 1: Identify coefficients The given polynomial is \( 8x^2 - 6x + 1 \). Here, we can identify the coefficients: - \( a = 8 \) - \( b = -6 \) - \( c = 1 \) ...
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|4 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer Questions|11 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer/short Answer Questions|16 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are zeroes of 5x^(2)-7x+1 , then find the value of (1)/(alpha)+(1)/(beta) .

If alpha and beta are zeroes of x^(2)-5x+6 , then find the value of alpha^(2)+beta^(2) .

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha and beta are the roots of 2x^(2) + 5x - 4 = 0 then find the value of (alpha)/(beta) + (beta)/(alpha) .

If alpha and beta are zeroes of the polynomial 3x^(2)+6x+1 , then find the value of alpha+beta+alpha beta .

If alpha,beta are zeroes of polynomial f(x) =x^(2)-p(x+1)-c , then find the value of (alpha+1)(beta+1) .

If alpha,beta be the roots of x^(2)-a(x-1)+b=0 , then the value of (1)/(alpha^(2)-a alpha)+(1)/(beta^(2)-a beta)+(2)/(a+b) is

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha,beta are the roots of the equation 3x^(2)-6x+4=0 , find the value of ((alpha)/(beta)+(beta)/(alpha))+2((1)/(alpha)+(1)/(beta))+3alphabeta .

If alpha and beta be the roots of equation x^(2) + 3x + 1 = 0 then the value of ((alpha)/(1 + beta))^(2) + ((beta)/(1 + alpha))^(2) is equal to