Home
Class 11
MATHS
Simplify with the help of binomial theor...

Simplify with the help of binomial theorm. `(x+1)^(5)+(x-1)^(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((x+1)^{5} + (x-1)^{5}\) using the Binomial Theorem, we can follow these steps: ### Step 1: Expand \((x+1)^{5}\) According to the Binomial Theorem, the expansion of \((a+b)^{n}\) is given by: \[ \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k} \] For \((x+1)^{5}\), we have \(a = x\), \(b = 1\), and \(n = 5\): \[ (x+1)^{5} = \binom{5}{0} x^{5} + \binom{5}{1} x^{4} \cdot 1 + \binom{5}{2} x^{3} \cdot 1^{2} + \binom{5}{3} x^{2} \cdot 1^{3} + \binom{5}{4} x^{1} \cdot 1^{4} + \binom{5}{5} x^{0} \cdot 1^{5} \] Calculating the coefficients: \[ = 1 \cdot x^{5} + 5 \cdot x^{4} + 10 \cdot x^{3} + 10 \cdot x^{2} + 5 \cdot x + 1 \] Thus, \[ (x+1)^{5} = x^{5} + 5x^{4} + 10x^{3} + 10x^{2} + 5x + 1 \] ### Step 2: Expand \((x-1)^{5}\) Now we expand \((x-1)^{5}\) using the same theorem: \[ (x-1)^{5} = \binom{5}{0} x^{5} + \binom{5}{1} x^{4} \cdot (-1) + \binom{5}{2} x^{3} \cdot (-1)^{2} + \binom{5}{3} x^{2} \cdot (-1)^{3} + \binom{5}{4} x^{1} \cdot (-1)^{4} + \binom{5}{5} x^{0} \cdot (-1)^{5} \] Calculating the coefficients: \[ = 1 \cdot x^{5} - 5 \cdot x^{4} + 10 \cdot x^{3} - 10 \cdot x^{2} + 5 \cdot x - 1 \] Thus, \[ (x-1)^{5} = x^{5} - 5x^{4} + 10x^{3} - 10x^{2} + 5x - 1 \] ### Step 3: Add the Two Expansions Now we add the two expansions: \[ (x+1)^{5} + (x-1)^{5} = (x^{5} + 5x^{4} + 10x^{3} + 10x^{2} + 5x + 1) + (x^{5} - 5x^{4} + 10x^{3} - 10x^{2} + 5x - 1) \] Combining like terms: - The \(x^{5}\) terms: \(x^{5} + x^{5} = 2x^{5}\) - The \(x^{4}\) terms: \(5x^{4} - 5x^{4} = 0\) - The \(x^{3}\) terms: \(10x^{3} + 10x^{3} = 20x^{3}\) - The \(x^{2}\) terms: \(10x^{2} - 10x^{2} = 0\) - The \(x\) terms: \(5x + 5x = 10x\) - The constant terms: \(1 - 1 = 0\) Thus, we have: \[ (x+1)^{5} + (x-1)^{5} = 2x^{5} + 20x^{3} + 10x \] ### Final Answer The simplified expression is: \[ \boxed{2x^{5} + 20x^{3} + 10x} \]

To simplify the expression \((x+1)^{5} + (x-1)^{5}\) using the Binomial Theorem, we can follow these steps: ### Step 1: Expand \((x+1)^{5}\) According to the Binomial Theorem, the expansion of \((a+b)^{n}\) is given by: \[ \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8A|22 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8B|38 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

Use binomial theorem to evaluate (10.1)^(5) .

Expand the following by binomial theorem: (1-2x)^5

Expand the following by binomial theorem: (x+y)^5

Expand the following by binomial theorem: (1-x)^6

Expand the following by binomial theorem: (x/3+1/x)^5

Using binomial theorem compute : (10. 1)^5

Simplify and write the answer in the exponential form : (2^5-:2^8)^5"x"\ 2^(-5) (ii) \ (-4)^3"x"\ (5)^(-3)"x"\ (-5)^(-3) (iii) 1/8"x"\ 3^(-3)

Expand the binomial ((x^(2))/(3) + (3)/(x))^(5)

Find the product of the binomials: (1/2x-1/5y)\ (1/2x-1/5y)

If the third term in the binomial expansion of (1+x^(log_(2)x))^(5) equals 2560, then a possible value of x is:

NAGEEN PRAKASHAN ENGLISH-BINOMIAL THEOREM-Miscellaneous Exericse
  1. Simplify with the help of binomial theorm. (x+1)^(5)+(x-1)^(5)

    Text Solution

    |

  2. Find a, b and n in the expansion of (a+b)^nif the first three terms ...

    Text Solution

    |

  3. If the coefficients of x^2a n d\ x^3 in the expansion o (3+a x)^9 are ...

    Text Solution

    |

  4. Find the coefficient of a^4 in the product (1+a)^4(2-a)^5 using binomi...

    Text Solution

    |

  5. If a and b are distinct integers, prove that a - b is a factor of a^n-...

    Text Solution

    |

  6. Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

    Text Solution

    |

  7. Find the value of (a^2+sqrt(a^2-1))^4+(a^2-sqrt(a^2-1))^4.

    Text Solution

    |

  8. Find an approximation of (0. 99)^5 using the first three terms of its ...

    Text Solution

    |

  9. Find n, if the ratio of the fifth term from the beginning to the fi...

    Text Solution

    |

  10. Using binomial theorem expand (1+x/2-2/x)^4,\ x!=0.

    Text Solution

    |

  11. Find the expansion of (3x^2-2a x+3a^2)^3 using binomial theorem.

    Text Solution

    |

  12. Find a, b and n in the expansion of (a+b)^nif the first three terms ...

    Text Solution

    |

  13. If the coefficients of x^2a n d\ x^3 in the expansion o (3+a x)^9 are ...

    Text Solution

    |

  14. Find the coefficient of x^5 in the expansion of (1 + 2x)^6 (1-x)^7.

    Text Solution

    |

  15. If a and b are distinct integers, prove that a - b is a factor of a^n-...

    Text Solution

    |

  16. Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

    Text Solution

    |

  17. Find the value of (a^2+sqrt(a^2-1))^4+(a^2-sqrt(a^2-1))^4.

    Text Solution

    |

  18. Find an approximation of (0. 99)^5using the first three terms of its ...

    Text Solution

    |

  19. Find n, if the ratio of the fifth term from the beginning to the fi...

    Text Solution

    |

  20. Expand using Binomial Theorem (1+x/2-2/x)^4,x!=0.

    Text Solution

    |

  21. Find the expansion of (3x^2-2a x+3a^2)^3 using binomial theorem.

    Text Solution

    |