Home
Class 11
MATHS
If o be the sum of odd terms and E that ...

If `o` be the sum of odd terms and `E` that of even terms in the expansion of `(x+a)^n` prove that: (i)`O^2-E^2=(x^2-a^2)^n` (ii) `4O E=(x+a)^(2n)-(x-a)^(2n)` (iii) `2(O^2+E^2)=(x+a)^(2n)+(x-a)^(2n)`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`(x+a)^(n) =^(n)C_(0).x^(n)+^(n)C_(1).x^(n-1).a`
`+^(n)C_(2).x^(n-2).a^(2)+^(n)C_(3).x^(n-3).a^(3)`
`+....+^(n)C_(n-1).x.a^(n-1)+^(n)C_(n).a^(n)`
`=[^(n)C_(0).x^(n)+^(n)C_(2).x^(n-2).a^(2)+^(n)C_(4).x^(n-4)`
`.a^(4)+....]+[.^(n)C_(1).x^(n-1).a`
`+^(n)C_(3).x^(n-3).a^(3)+^(n)C_(5).x^(n-5).a^(5)+.....]`
`rArr " "(x+a)^(n)=O+E " "("Given") ....(1)`
`" and " (x-a)^(n)=^(n)C_(0).x^(n)-^(n)C_(1).x^(n-1).a+^(n)C_(2).X^(n-2). a^(2)`
`-^(n)C_(3).x^(n-3).a^(3)+....+^(n)C_(n-1).x.(-a)^n-1)`
`+^(n)C_(n).(-a)^(n)`
`=[.^(n)C_(0)x^(n)+^(n)C_(2)x^(n-2).a^(2)+^(n)C_(4).x^(n-4).a^(4)`
`+......]-[.^(n)C_(1).x^(n-1).a`
`+^(n)C_(3).x^(n-3)a^(3)+^(n)C_(5).x^(n-5).a^(5)+.....]`
`rArr (x-a)^(n)=O-E " "......(2)`
`(i) L.H.S. =O^(2)-E^(2)`
`=(O+E).(O-E)`
`=(x+a)^(n).(x-a)^(n)`
`=[(x+a).(x-a)]^(n)`
`=(x^(2)-a^(2))^(n)=R.H.S. " ""Hence Proved"`
(ii) L.H.S. =4OE
`=(O-E)^(2)-(O-E)^(2)`
`=[(x+a)^(n)]^(2) [(x-a)^(n)]^(2)]`
`=(x+a)^(2n)-(x-a)^(2n)=R.H.S." ""Hence Proved"`
`(iii) L.H.S. =2(O^(2)+E^(2))`
`=(O^(2)+E^(2)+2OE)+(O^(2)+E^(2)-2OE)`
`=(O+E)^(2) +(O-E)^(2)`
`[(x+a)^(n)]^(2)+[(x-a)^(n)]^(2)`
`=(x+a)^(2n)+(x-a)^(2n)`
`=R.H.S. " ""Hence Proved"`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8A|22 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8B|38 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

If P be the sum of odd terms and Q be the sum of even terms in the expansion of (x+a)^n , prove that (i) p^2 - Q^2 = (x^2 - a^2)^(n)

If P be the sum of odd terms and Q be the sum of even terms in the expansion of (x+a)^n , prove that (iii) 2(P^2 + Q^2 ) = (x+a)^(2n) + (x-a)^(2n) .

If A be the sum of odd terms and B be the sum of even terms in the expansion of (x+a)^(n) , prove that A^(2) -B^(2) = (x^(2) - a^(2)) ^(n)

If P be the sum of odd terms and Q be the sum of even terms in the expansion of (x+a)^n , prove that (ii) 4PQ= (x+a)^(2n) - (x-a)^(2n) and

If the sum of odd terms and the sum of even terms in the expansion of (x+a)^n are p and q respectively then p^2+q^2=

If P and Q are the sum of odd terms and the sum of even terms respectively in the expansion of (x+a)^(n) then prove that P^(2)-Q^(2)=(x^(2)-a^(2))^(n)

If P and Q are the sum of odd sum terms and the sum of even terms respectively in the expansion of (x +a)^n then prove that 4PQ = (x+a)^(2n) - (x - a)^(2n)

The sum of the coefficients of middle terms in the expansion of (1+x)^(2n-1)

The middle term in the expansion of (x + 1/x)^(2n) is

If P be the sum of odd terms and Q be the sum of even terms in the expansion of (x+a)^(n) , then (x+a)^(2n)+(x-a)^(2n) is (i) P^(2)-Q^(2) (ii) P^(2)+Q^(2) (iii) 2(P^(2)+Q^(2)) (iv) 4PQ

NAGEEN PRAKASHAN ENGLISH-BINOMIAL THEOREM-Miscellaneous Exericse
  1. If o be the sum of odd terms and E that of even terms in the expansion...

    Text Solution

    |

  2. Find a, b and n in the expansion of (a+b)^nif the first three terms ...

    Text Solution

    |

  3. If the coefficients of x^2a n d\ x^3 in the expansion o (3+a x)^9 are ...

    Text Solution

    |

  4. Find the coefficient of a^4 in the product (1+a)^4(2-a)^5 using binomi...

    Text Solution

    |

  5. If a and b are distinct integers, prove that a - b is a factor of a^n-...

    Text Solution

    |

  6. Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

    Text Solution

    |

  7. Find the value of (a^2+sqrt(a^2-1))^4+(a^2-sqrt(a^2-1))^4.

    Text Solution

    |

  8. Find an approximation of (0. 99)^5 using the first three terms of its ...

    Text Solution

    |

  9. Find n, if the ratio of the fifth term from the beginning to the fi...

    Text Solution

    |

  10. Using binomial theorem expand (1+x/2-2/x)^4,\ x!=0.

    Text Solution

    |

  11. Find the expansion of (3x^2-2a x+3a^2)^3 using binomial theorem.

    Text Solution

    |

  12. Find a, b and n in the expansion of (a+b)^nif the first three terms ...

    Text Solution

    |

  13. If the coefficients of x^2a n d\ x^3 in the expansion o (3+a x)^9 are ...

    Text Solution

    |

  14. Find the coefficient of x^5 in the expansion of (1 + 2x)^6 (1-x)^7.

    Text Solution

    |

  15. If a and b are distinct integers, prove that a - b is a factor of a^n-...

    Text Solution

    |

  16. Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

    Text Solution

    |

  17. Find the value of (a^2+sqrt(a^2-1))^4+(a^2-sqrt(a^2-1))^4.

    Text Solution

    |

  18. Find an approximation of (0. 99)^5using the first three terms of its ...

    Text Solution

    |

  19. Find n, if the ratio of the fifth term from the beginning to the fi...

    Text Solution

    |

  20. Expand using Binomial Theorem (1+x/2-2/x)^4,x!=0.

    Text Solution

    |

  21. Find the expansion of (3x^2-2a x+3a^2)^3 using binomial theorem.

    Text Solution

    |