Home
Class 11
MATHS
"if "(1+x)^(n)=C(0)+C(1).x+C(2).x^(2)+C(...

`"if "(1+x)^(n)=C_(0)+C_(1).x+C_(2).x^(2)+C_(3).x^(3)+......+C_(n).x^(n),` then prove that
`C_(0)+2C_(1)+4C_(2)+6C_(3)+…….+2n.C_(n)=1+n.2^(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ C_0 + 2C_1 + 4C_2 + 6C_3 + \ldots + 2nC_n = 1 + n \cdot 2^n, \] we start with the binomial expansion of \((1 + x)^n\): \[ (1 + x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \ldots + C_n x^n. \] ### Step 1: Define the sum we want to evaluate Let \[ S = C_0 + 2C_1 + 4C_2 + 6C_3 + \ldots + 2nC_n. \] ### Step 2: Rewrite the coefficients using symmetry Using the property of binomial coefficients, we know that \(C_k = C_{n-k}\). Therefore, we can rewrite the sum \(S\) as follows: \[ S = C_0 + 2C_1 + 4C_2 + 6C_3 + \ldots + 2nC_n = \sum_{k=0}^{n} 2k C_k. \] ### Step 3: Use a generating function To evaluate \(S\), we can use the derivative of the binomial expansion. Consider: \[ f(x) = (1 + x)^n. \] Taking the derivative gives: \[ f'(x) = n(1 + x)^{n-1}. \] ### Step 4: Evaluate at \(x = 1\) Now, we can evaluate \(f'(1)\): \[ f'(1) = n(1 + 1)^{n-1} = n \cdot 2^{n-1}. \] ### Step 5: Relate the derivative to the sum The derivative \(f'(x)\) can also be expressed in terms of the coefficients: \[ f'(x) = C_1 + 2C_2 x + 3C_3 x^2 + \ldots + nC_n x^{n-1}. \] Evaluating at \(x = 1\) gives: \[ f'(1) = C_1 + 2C_2 + 3C_3 + \ldots + nC_n. \] ### Step 6: Formulate the final expression We can express \(S\) in terms of \(f'(1)\): \[ S = 2(C_1 + 2C_2 + 3C_3 + \ldots + nC_n) = 2f'(1) = 2n \cdot 2^{n-1}. \] ### Step 7: Combine results Now, we need to add \(C_0\) to our expression for \(S\): \[ S = 2n \cdot 2^{n-1} + C_0. \] Since \(C_0 = 1\) (the coefficient of \(x^0\) in the expansion of \((1 + x)^n\)), we have: \[ S = 2n \cdot 2^{n-1} + 1. \] ### Step 8: Simplify the expression Now, we can simplify: \[ S = 1 + n \cdot 2^n. \] ### Conclusion Thus, we have shown that \[ C_0 + 2C_1 + 4C_2 + 6C_3 + \ldots + 2nC_n = 1 + n \cdot 2^n. \]

To prove that \[ C_0 + 2C_1 + 4C_2 + 6C_3 + \ldots + 2nC_n = 1 + n \cdot 2^n, \] we start with the binomial expansion of \((1 + x)^n\): ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8A|22 Videos
  • BINOMIAL THEOREM

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8B|38 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATION

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|20 Videos

Similar Questions

Explore conceptually related problems

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

Prove that C_0 + 2.C_1 + 4.C_2 + 8.C_3 + ……+2^n.C_n = 3^n

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

If (1+x)^(n)=C_(0)+C_(1).x+C_(2).x^(2)+….+C_(n).x^(n). then prove that (i) C_(0)+2C_(1)+3C_(2)+…+(n-1)C_(n)=(n+2).2^(n-1) (ii)C_(0)+3C_(1)+5C_(2)+...+(2n+1)C_(n)=(n+1).2^(n)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

NAGEEN PRAKASHAN ENGLISH-BINOMIAL THEOREM-Miscellaneous Exericse
  1. "if "(1+x)^(n)=C(0)+C(1).x+C(2).x^(2)+C(3).x^(3)+......+C(n).x^(n), th...

    Text Solution

    |

  2. Find a, b and n in the expansion of (a+b)^nif the first three terms ...

    Text Solution

    |

  3. If the coefficients of x^2a n d\ x^3 in the expansion o (3+a x)^9 are ...

    Text Solution

    |

  4. Find the coefficient of a^4 in the product (1+a)^4(2-a)^5 using binomi...

    Text Solution

    |

  5. If a and b are distinct integers, prove that a - b is a factor of a^n-...

    Text Solution

    |

  6. Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

    Text Solution

    |

  7. Find the value of (a^2+sqrt(a^2-1))^4+(a^2-sqrt(a^2-1))^4.

    Text Solution

    |

  8. Find an approximation of (0. 99)^5 using the first three terms of its ...

    Text Solution

    |

  9. Find n, if the ratio of the fifth term from the beginning to the fi...

    Text Solution

    |

  10. Using binomial theorem expand (1+x/2-2/x)^4,\ x!=0.

    Text Solution

    |

  11. Find the expansion of (3x^2-2a x+3a^2)^3 using binomial theorem.

    Text Solution

    |

  12. Find a, b and n in the expansion of (a+b)^nif the first three terms ...

    Text Solution

    |

  13. If the coefficients of x^2a n d\ x^3 in the expansion o (3+a x)^9 are ...

    Text Solution

    |

  14. Find the coefficient of x^5 in the expansion of (1 + 2x)^6 (1-x)^7.

    Text Solution

    |

  15. If a and b are distinct integers, prove that a - b is a factor of a^n-...

    Text Solution

    |

  16. Evaluate (sqrt(3)+sqrt(2))^6-(sqrt(3)-sqrt(2))^6dot

    Text Solution

    |

  17. Find the value of (a^2+sqrt(a^2-1))^4+(a^2-sqrt(a^2-1))^4.

    Text Solution

    |

  18. Find an approximation of (0. 99)^5using the first three terms of its ...

    Text Solution

    |

  19. Find n, if the ratio of the fifth term from the beginning to the fi...

    Text Solution

    |

  20. Expand using Binomial Theorem (1+x/2-2/x)^4,x!=0.

    Text Solution

    |

  21. Find the expansion of (3x^2-2a x+3a^2)^3 using binomial theorem.

    Text Solution

    |