Home
Class 12
MATHS
if 2A +B=[{:(5,-1),(3,2):}]and A-2B =...

if ` 2A +B=[{:(5,-1),(3,2):}]and A-2B =[{:(1,-4),(0,5):}]` then find the matrices A and B .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrices \( A \) and \( B \) given the equations: 1. \( 2A + B = \begin{pmatrix} 5 & -1 \\ 3 & 2 \end{pmatrix} \) (Equation 1) 2. \( A - 2B = \begin{pmatrix} 1 & -4 \\ 0 & 5 \end{pmatrix} \) (Equation 2) ### Step 1: Rewrite the equations Let's denote the matrices: - \( A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \) - \( B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \) From Equation 1: \[ 2A + B = \begin{pmatrix} 5 & -1 \\ 3 & 2 \end{pmatrix} \] This gives us: \[ B = \begin{pmatrix} 5 & -1 \\ 3 & 2 \end{pmatrix} - 2A \] From Equation 2: \[ A - 2B = \begin{pmatrix} 1 & -4 \\ 0 & 5 \end{pmatrix} \] This gives us: \[ A = \begin{pmatrix} 1 & -4 \\ 0 & 5 \end{pmatrix} + 2B \] ### Step 2: Substitute for B Substituting the expression for \( B \) from Equation 1 into the expression for \( A \): \[ A = \begin{pmatrix} 1 & -4 \\ 0 & 5 \end{pmatrix} + 2\left(\begin{pmatrix} 5 & -1 \\ 3 & 2 \end{pmatrix} - 2A\right) \] Expanding this, we have: \[ A = \begin{pmatrix} 1 & -4 \\ 0 & 5 \end{pmatrix} + \begin{pmatrix} 10 & -2 \\ 6 & 4 \end{pmatrix} - 4A \] Combining the terms gives: \[ A + 4A = \begin{pmatrix} 1 + 10 & -4 - 2 \\ 0 + 6 & 5 + 4 \end{pmatrix} \] \[ 5A = \begin{pmatrix} 11 & -6 \\ 6 & 9 \end{pmatrix} \] Now, divide both sides by 5: \[ A = \begin{pmatrix} \frac{11}{5} & -\frac{6}{5} \\ \frac{6}{5} & \frac{9}{5} \end{pmatrix} \] ### Step 3: Substitute A back to find B Now substituting \( A \) back into the expression for \( B \): \[ B = \begin{pmatrix} 5 & -1 \\ 3 & 2 \end{pmatrix} - 2\begin{pmatrix} \frac{11}{5} & -\frac{6}{5} \\ \frac{6}{5} & \frac{9}{5} \end{pmatrix} \] Calculating \( 2A \): \[ 2A = \begin{pmatrix} \frac{22}{5} & -\frac{12}{5} \\ \frac{12}{5} & \frac{18}{5} \end{pmatrix} \] Now substituting this into the expression for \( B \): \[ B = \begin{pmatrix} 5 & -1 \\ 3 & 2 \end{pmatrix} - \begin{pmatrix} \frac{22}{5} & -\frac{12}{5} \\ \frac{12}{5} & \frac{18}{5} \end{pmatrix} \] Calculating the elements: \[ B = \begin{pmatrix} 5 - \frac{22}{5} & -1 + \frac{12}{5} \\ 3 - \frac{12}{5} & 2 - \frac{18}{5} \end{pmatrix} \] This simplifies to: \[ B = \begin{pmatrix} \frac{25}{5} - \frac{22}{5} & -\frac{5}{5} + \frac{12}{5} \\ \frac{15}{5} - \frac{12}{5} & \frac{10}{5} - \frac{18}{5} \end{pmatrix} \] \[ B = \begin{pmatrix} \frac{3}{5} & \frac{7}{5} \\ \frac{3}{5} & -\frac{8}{5} \end{pmatrix} \] ### Final Result Thus, we have: \[ A = \begin{pmatrix} \frac{11}{5} & -\frac{6}{5} \\ \frac{6}{5} & \frac{9}{5} \end{pmatrix}, \quad B = \begin{pmatrix} \frac{3}{5} & \frac{7}{5} \\ \frac{3}{5} & -\frac{8}{5} \end{pmatrix} \]

To solve the problem, we need to find the matrices \( A \) and \( B \) given the equations: 1. \( 2A + B = \begin{pmatrix} 5 & -1 \\ 3 & 2 \end{pmatrix} \) (Equation 1) 2. \( A - 2B = \begin{pmatrix} 1 & -4 \\ 0 & 5 \end{pmatrix} \) (Equation 2) ### Step 1: Rewrite the equations Let's denote the matrices: - \( A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3a|20 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3b|15 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,

If matrix A=[{:(,2,1,3),(,4,-3,2):}] and B=[{:(,3,-2),(,7,4):}] , find transpose matrices A^t and B^t . If possible, find (i) A+A^t (ii) B+B^t

if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2A+B.

"If A"=[{:(,8,0),(,4,-2),(,3,6):}] and B=[{:(,2,-2),(,4,2),(,-5,1):}] then find the matrix X, such that 2A+3X=5B

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

If A=[{:(,0,-1),(,4,-3):}], B=[{:(,-5),(,6):}] and 3A xx M=2B , find matrix M.

If A=[{:(,1),(,2),(,3):}]and B =[{:(,-5,4,0),(,0,2,-1),(,1,-3,2):}]"then AB"

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

if A[{:(1 " "3),(-2" " 4):}] and B=[{:(3" "0),(-1" "2):}] , then find 5A - 2B .

if A=[{:(2,1,3),(1,-1,2),(4,1,5):}]and B=[{:(1,-1,2),(2,1,5),(4,1,3):}], then show that : (i) (A+B)'=A'+B' (ii) (A+4B)'=A'+4B'