Home
Class 12
MATHS
if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-...

if `A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}],` then find AB and BA ,

Text Solution

AI Generated Solution

The correct Answer is:
To find the products \( AB \) and \( BA \) for the given matrices \( A \) and \( B \), we will follow the steps of matrix multiplication. ### Given Matrices: \[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} -3 & -2 \\ 0 & 1 \\ -4 & -5 \end{pmatrix} \] ### Step 1: Verify Dimensions for Multiplication - Matrix \( A \) is of dimension \( 2 \times 3 \) (2 rows and 3 columns). - Matrix \( B \) is of dimension \( 3 \times 2 \) (3 rows and 2 columns). - Since the number of columns in \( A \) (3) is equal to the number of rows in \( B \) (3), the product \( AB \) exists. ### Step 2: Calculate \( AB \) To find \( AB \), we will use the formula for matrix multiplication: \[ (AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} \] Calculating each element of \( AB \): 1. **Element (1,1)**: \[ (AB)_{11} = 1 \cdot (-3) + 2 \cdot 0 + 3 \cdot (-4) = -3 + 0 - 12 = -15 \] 2. **Element (1,2)**: \[ (AB)_{12} = 1 \cdot (-2) + 2 \cdot 1 + 3 \cdot (-5) = -2 + 2 - 15 = -15 \] 3. **Element (2,1)**: \[ (AB)_{21} = 4 \cdot (-3) + 5 \cdot 0 + 6 \cdot (-4) = -12 + 0 - 24 = -36 \] 4. **Element (2,2)**: \[ (AB)_{22} = 4 \cdot (-2) + 5 \cdot 1 + 6 \cdot (-5) = -8 + 5 - 30 = -33 \] Thus, the product \( AB \) is: \[ AB = \begin{pmatrix} -15 & -15 \\ -36 & -33 \end{pmatrix} \] ### Step 3: Verify Dimensions for \( BA \) - Matrix \( B \) is of dimension \( 3 \times 2 \). - Matrix \( A \) is of dimension \( 2 \times 3 \). - Since the number of columns in \( B \) (2) is equal to the number of rows in \( A \) (2), the product \( BA \) exists. ### Step 4: Calculate \( BA \) Calculating each element of \( BA \): 1. **Element (1,1)**: \[ (BA)_{11} = (-3) \cdot 1 + (-2) \cdot 4 = -3 - 8 = -11 \] 2. **Element (1,2)**: \[ (BA)_{12} = (-3) \cdot 2 + (-2) \cdot 5 = -6 - 10 = -16 \] 3. **Element (1,3)**: \[ (BA)_{13} = (-3) \cdot 3 + (-2) \cdot 6 = -9 - 12 = -21 \] 4. **Element (2,1)**: \[ (BA)_{21} = 0 \cdot 1 + 1 \cdot 4 = 0 + 4 = 4 \] 5. **Element (2,2)**: \[ (BA)_{22} = 0 \cdot 2 + 1 \cdot 5 = 0 + 5 = 5 \] 6. **Element (2,3)**: \[ (BA)_{23} = 0 \cdot 3 + 1 \cdot 6 = 0 + 6 = 6 \] 7. **Element (3,1)**: \[ (BA)_{31} = (-4) \cdot 1 + (-5) \cdot 4 = -4 - 20 = -24 \] 8. **Element (3,2)**: \[ (BA)_{32} = (-4) \cdot 2 + (-5) \cdot 5 = -8 - 25 = -33 \] 9. **Element (3,3)**: \[ (BA)_{33} = (-4) \cdot 3 + (-5) \cdot 6 = -12 - 30 = -42 \] Thus, the product \( BA \) is: \[ BA = \begin{pmatrix} -11 & -16 & -21 \\ 4 & 5 & 6 \\ -24 & -33 & -42 \end{pmatrix} \] ### Final Results: \[ AB = \begin{pmatrix} -15 & -15 \\ -36 & -33 \end{pmatrix}, \quad BA = \begin{pmatrix} -11 & -16 & -21 \\ 4 & 5 & 6 \\ -24 & -33 & -42 \end{pmatrix} \]

To find the products \( AB \) and \( BA \) for the given matrices \( A \) and \( B \), we will follow the steps of matrix multiplication. ### Given Matrices: \[ A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} -3 & -2 \\ 0 & 1 \\ -4 & -5 \end{pmatrix} \] ### Step 1: Verify Dimensions for Multiplication ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3a|20 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3b|15 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(2,-1,3),(4,5,-6):}] and B=[{:(1,2),(3,4),(5,-6):}] then

if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2A+B.

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

If A=[{:(,1),(,2),(,3):}]and B =[{:(,-5,4,0),(,0,2,-1),(,1,-3,2):}]"then AB"

if 2A +B=[{:(5,-1),(3,2):}]and A-2B =[{:(1,-4),(0,5):}] then find the matrices A and B .

if A=[{:(1,0,-3),(2,3,4),(-4,5,-2):}]and b=[{:(3,0,-1),(2,5,-4),(4,-1,2):}], then show that : (AB)'=B'A'

If A=[{:(2,3,-1),(1,4,2):}] and B=[{:(2,3),(4,5),(2,1):}] then AB and BA are defined and equal.

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

If A= [{:(,1,2),(,3,-4),(,5,6):}]and B=[{:(,4,5,6),(,7,-8,2):}] will AB be equal to BA. Also find AB & BA.