Home
Class 12
MATHS
if A=[{:(3,-1,2),(0,5,-3),(1,-2,7):}]and...

if `A=[{:(3,-1,2),(0,5,-3),(1,-2,7):}]and B=[{:(1,0,0),(0,1,0),(0,0,1):}],`find whether AB=BA or Not .

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether \( AB = BA \) for the given matrices \( A \) and \( B \), we will perform matrix multiplication for both \( AB \) and \( BA \). Given: \[ A = \begin{pmatrix} 3 & -1 & 2 \\ 0 & 5 & -3 \\ 1 & -2 & 7 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 1: Calculate \( AB \) To find \( AB \), we multiply matrix \( A \) by matrix \( B \): \[ AB = A \cdot B = \begin{pmatrix} 3 & -1 & 2 \\ 0 & 5 & -3 \\ 1 & -2 & 7 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Calculating each element of \( AB \): - First row: - \( (3 \cdot 1) + (-1 \cdot 0) + (2 \cdot 0) = 3 \) - \( (3 \cdot 0) + (-1 \cdot 1) + (2 \cdot 0) = -1 \) - \( (3 \cdot 0) + (-1 \cdot 0) + (2 \cdot 1) = 2 \) - Second row: - \( (0 \cdot 1) + (5 \cdot 0) + (-3 \cdot 0) = 0 \) - \( (0 \cdot 0) + (5 \cdot 1) + (-3 \cdot 0) = 5 \) - \( (0 \cdot 0) + (5 \cdot 0) + (-3 \cdot 1) = -3 \) - Third row: - \( (1 \cdot 1) + (-2 \cdot 0) + (7 \cdot 0) = 1 \) - \( (1 \cdot 0) + (-2 \cdot 1) + (7 \cdot 0) = -2 \) - \( (1 \cdot 0) + (-2 \cdot 0) + (7 \cdot 1) = 7 \) Thus, we have: \[ AB = \begin{pmatrix} 3 & -1 & 2 \\ 0 & 5 & -3 \\ 1 & -2 & 7 \end{pmatrix} \] ### Step 2: Calculate \( BA \) Now, we calculate \( BA \): \[ BA = B \cdot A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & -1 & 2 \\ 0 & 5 & -3 \\ 1 & -2 & 7 \end{pmatrix} \] Calculating each element of \( BA \): - First row: - \( (1 \cdot 3) + (0 \cdot 0) + (0 \cdot 1) = 3 \) - \( (1 \cdot -1) + (0 \cdot 5) + (0 \cdot -2) = -1 \) - \( (1 \cdot 2) + (0 \cdot -3) + (0 \cdot 7) = 2 \) - Second row: - \( (0 \cdot 3) + (1 \cdot 0) + (0 \cdot 1) = 0 \) - \( (0 \cdot -1) + (1 \cdot 5) + (0 \cdot -2) = 5 \) - \( (0 \cdot 2) + (1 \cdot -3) + (0 \cdot 7) = -3 \) - Third row: - \( (0 \cdot 3) + (0 \cdot 0) + (1 \cdot 1) = 1 \) - \( (0 \cdot -1) + (0 \cdot 5) + (1 \cdot -2) = -2 \) - \( (0 \cdot 2) + (0 \cdot -3) + (1 \cdot 7) = 7 \) Thus, we have: \[ BA = \begin{pmatrix} 3 & -1 & 2 \\ 0 & 5 & -3 \\ 1 & -2 & 7 \end{pmatrix} \] ### Conclusion Since \( AB = BA \), we conclude that: \[ AB = BA \]

To determine whether \( AB = BA \) for the given matrices \( A \) and \( B \), we will perform matrix multiplication for both \( AB \) and \( BA \). Given: \[ A = \begin{pmatrix} 3 & -1 & 2 \\ 0 & 5 & -3 \\ 1 & -2 & 7 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 1: Calculate \( AB \) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3a|20 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3b|15 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

If A=[(1,0,0),(0,-1,0),(0,0,2)] and B=[(2,0,0),(0, 3,0),(0,0,-1)] , find A+B , 3A+4B .

If A=[{:(,1),(,2),(,3):}]and B =[{:(,-5,4,0),(,0,2,-1),(,1,-3,2):}]"then AB"

If A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0),(,0,1):}] ,find A^2-5A+7I .

If A = [{:(0,1,2),(1,2,3),(2,3,4):}] and B=[{:(1,-2),(-1,0),(2,-1):}] obtain the product AB and explain why BA is not defined?

if A=[{:(3,2,1),(1,2,3),(3,-6,1):}],B=[{:(1,4,0),(2,-3,0),(1,2,0):}] and C=[{:(1,2,3),(3,2,1),(8,7,9):}], then find AB-AC.

if A=[{:(1,0,-3),(2,3,4),(-4,5,-2):}]and b=[{:(3,0,-1),(2,5,-4),(4,-1,2):}], then show that : (AB)'=B'A'

If A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)] and B = [(1,2,-2), (-1,3,0), (0,-2,1)] find (AB)^(-1)

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,