Home
Class 12
MATHS
if A=[{:(2,-3),(1,4):}],B=[{:(-1,0),(1,2...

if `A=[{:(2,-3),(1,4):}],B=[{:(-1,0),(1,2):}], C=[{:(3,1),(1,2):}]`, then show that A (BC)=(AB)c.

Text Solution

AI Generated Solution

The correct Answer is:
To show that \( A(BC) = (AB)C \) for the given matrices \( A \), \( B \), and \( C \), we will follow these steps: ### Step 1: Define the matrices Given: \[ A = \begin{pmatrix} 2 & -3 \\ 1 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 0 \\ 1 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix} \] ### Step 2: Calculate \( BC \) To find \( BC \), we perform matrix multiplication: \[ BC = B \cdot C = \begin{pmatrix} -1 & 0 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( (-1) \cdot 3 + 0 \cdot 1 = -3 + 0 = -3 \) - First row, second column: \( (-1) \cdot 1 + 0 \cdot 2 = -1 + 0 = -1 \) - Second row, first column: \( 1 \cdot 3 + 2 \cdot 1 = 3 + 2 = 5 \) - Second row, second column: \( 1 \cdot 1 + 2 \cdot 2 = 1 + 4 = 5 \) Thus, \[ BC = \begin{pmatrix} -3 & -1 \\ 5 & 5 \end{pmatrix} \] ### Step 3: Calculate \( A(BC) \) Now, we calculate \( A(BC) \): \[ A(BC) = A \cdot BC = \begin{pmatrix} 2 & -3 \\ 1 & 4 \end{pmatrix} \cdot \begin{pmatrix} -3 & -1 \\ 5 & 5 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 2 \cdot (-3) + (-3) \cdot 5 = -6 - 15 = -21 \) - First row, second column: \( 2 \cdot (-1) + (-3) \cdot 5 = -2 - 15 = -17 \) - Second row, first column: \( 1 \cdot (-3) + 4 \cdot 5 = -3 + 20 = 17 \) - Second row, second column: \( 1 \cdot (-1) + 4 \cdot 5 = -1 + 20 = 19 \) Thus, \[ A(BC) = \begin{pmatrix} -21 & -17 \\ 17 & 19 \end{pmatrix} \] ### Step 4: Calculate \( AB \) Next, we calculate \( AB \): \[ AB = A \cdot B = \begin{pmatrix} 2 & -3 \\ 1 & 4 \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 \\ 1 & 2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 2 \cdot (-1) + (-3) \cdot 1 = -2 - 3 = -5 \) - First row, second column: \( 2 \cdot 0 + (-3) \cdot 2 = 0 - 6 = -6 \) - Second row, first column: \( 1 \cdot (-1) + 4 \cdot 1 = -1 + 4 = 3 \) - Second row, second column: \( 1 \cdot 0 + 4 \cdot 2 = 0 + 8 = 8 \) Thus, \[ AB = \begin{pmatrix} -5 & -6 \\ 3 & 8 \end{pmatrix} \] ### Step 5: Calculate \( (AB)C \) Now, we calculate \( (AB)C \): \[ (AB)C = AB \cdot C = \begin{pmatrix} -5 & -6 \\ 3 & 8 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix} \] Calculating the elements: - First row, first column: \( -5 \cdot 3 + (-6) \cdot 1 = -15 - 6 = -21 \) - First row, second column: \( -5 \cdot 1 + (-6) \cdot 2 = -5 - 12 = -17 \) - Second row, first column: \( 3 \cdot 3 + 8 \cdot 1 = 9 + 8 = 17 \) - Second row, second column: \( 3 \cdot 1 + 8 \cdot 2 = 3 + 16 = 19 \) Thus, \[ (AB)C = \begin{pmatrix} -21 & -17 \\ 17 & 19 \end{pmatrix} \] ### Conclusion We have shown that: \[ A(BC) = \begin{pmatrix} -21 & -17 \\ 17 & 19 \end{pmatrix} = (AB)C \] Thus, \( A(BC) = (AB)C \).

To show that \( A(BC) = (AB)C \) for the given matrices \( A \), \( B \), and \( C \), we will follow these steps: ### Step 1: Define the matrices Given: \[ A = \begin{pmatrix} 2 & -3 \\ 1 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 0 \\ 1 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3a|20 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3b|15 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

if A=[(1,2),(3,4):}],B=[{:(-1,0),(2,3):}]and C=[{:(1,-1),(0,1):}], then show that : (i) A(B+C)=AB+AC (ii) (A-B)C=AC-BC.

If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2):}] then show that (i) A(B+C)=AB+AC (ii) (B-A)C=BC-AC .

If A=[{:(1,2),(-1,3):}]B=[{:(4,0),(1,5):}],C=[{:(2,0),(1,-2):}] a=4 and b=-2, then show that (i) (a+b)B=aB+bB (ii) a(C-A)=aC-aA (iii) (bA)^(T)=bA^(T)

If A=[{:(2, 1,),(4,2,)],B =[{:(2,3,4),(1,4,0):}] and C=[{:(-1,2,1),(1,0,2):}] then veri fy that A(B+C)=(AB+AC) .

if A=[{:(1,0,-3),(2,3,4),(-4,5,-2):}]and b=[{:(3,0,-1),(2,5,-4),(4,-1,2):}], then show that : (AB)'=B'A'

If A = [{:(0,4),(1,0):}], B = [{:( -2,0),(3,-2) :} ] and C = [ {:( -1,-2),(2,0) :}] show that : (B- C ) A = BA - CA

If A=[{:(,1,3),(,2,4):}], B=[{:(,1,2),(,4,3):}] and C=[{:(,4,3),(,1,2):}] . Find (i) (AB) C (ii) A (BC) Is A(BC)=(AB) C?

If A=[{:(1,2),(-2,1):}],B=[{:(2,3),(3,-4):}] and C=[{:(1,0),(-1,0):}] , verfity (i) A(B+C)=AB+AC.

If A=[{:(3,-1),(1,-3):}]" and B"=[{:(2,1),(-1,-2):}]," then show that" : (AB)^(-1)=B^(-1)A^(-1)