Home
Class 12
MATHS
If A=[(cos^2 theta , sin theta cos theta...

If `A=[(cos^2 theta , sin theta cos theta ),(sin theta cos theta , sin^2 theta )], B=[(cos^2 phi , sin phi cos phi ),(sin phi cos phi , sin^2 phi )]` and `theta` and `phi` differs by `pi/2` , then AB=

Text Solution

Verified by Experts

The correct Answer is:
N/a

`L.H.S=[{:("cos"^(2)theta,costhetasintheta),(costheta sin theta,sin ^(2)theta):}][{:("cos"^(2)phi, cos phi sinphi),("cos" phisin phi ,sinphi):}]`
`=[{:(cos^(2)theta cos^(2)theta phi cosphi sintheta sinphi" "),(" "cos^(2)thetacosphisin +costhetasinthetasin^(2)phi),(costhetacos^(2)phisintheta+sin^(2)cosphi sinphi),(" "cos theta sin theta cosphi sinphi +sin^(2)thetasin^(2)phi):}]`
`=[{:(costheta cos phi( cos phi +sin theta sin phi )),(" "cos theta sin phi (costheta cos phi +sinthetasin phi)),(cosphisintheta(costhetacos phi +sintheta sin phi)),(" "sinthetasin phi (costhetacosphi +sintheta sinphi)):}]`
`=[{:(costheta cosphi .cos(theta-phi),costhetasin phi cos (theta-phi)),(cosphi sin theta.cos (theta-phi),sinthetasinphicos(theta-phi)):}]`
`=[{:(cos thetacos phi.cospi//2,costhetasinphi.cospi//2),(cosphisintheta.cospi//2,sinthetasinphi.cospi//2):}]`
`[{:(0,0),(0,0):}]=O=R.H.S.` hence proved
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3a|20 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3b|15 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi),(cos phi sin phi,sin^2 phi)]=0

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi),(cos phi sin phi,sin^2 phi)]=0

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

If A=[[cos 2 theta, sin 2 theta],[-sin2theta, cos2theta]] , find A^2

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

Prove that (cos theta+sin theta )^2 + (cos theta - sin theta )^2 =2

sin^(3)theta + sin theta - sin theta cos^(2)theta =

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

If cos 3theta+sin3theta+(2sin2theta-3)(sin theta-cos theta)gt0 , then theta lies in