Home
Class 12
MATHS
if A=[{:(1,0),(0,1):}]and B=[{:(a,c),(b,...

`if A=[{:(1,0),(0,1):}]and B=[{:(a,c),(b,d):}],`then show that
`(AB)'=B'A'`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \((AB)' = B'A'\), where \(A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\) (the identity matrix) and \(B = \begin{pmatrix} a & c \\ b & d \end{pmatrix}\), we will follow these steps: ### Step 1: Multiply Matrices A and B First, we need to calculate the product \(AB\). \[ AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} \] Calculating the elements of the resulting matrix: - The element at position (1,1): \[ 1 \cdot a + 0 \cdot b = a \] - The element at position (1,2): \[ 1 \cdot c + 0 \cdot d = c \] - The element at position (2,1): \[ 0 \cdot a + 1 \cdot b = b \] - The element at position (2,2): \[ 0 \cdot c + 1 \cdot d = d \] Thus, we have: \[ AB = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \] ### Step 2: Find the Transpose of AB Now we will find the transpose of the matrix \(AB\): \[ (AB)' = \begin{pmatrix} a & c \\ b & d \end{pmatrix}' \] The transpose of a matrix is obtained by swapping rows and columns: \[ (AB)' = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] ### Step 3: Find the Transpose of B Next, we find the transpose of matrix \(B\): \[ B' = \begin{pmatrix} a & c \\ b & d \end{pmatrix}' \] By swapping rows and columns: \[ B' = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] ### Step 4: Find the Transpose of A Now, we find the transpose of matrix \(A\): \[ A' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}' \] Since \(A\) is the identity matrix, its transpose remains the same: \[ A' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 5: Multiply B' and A' Now we need to multiply \(B'\) and \(A'\): \[ B'A' = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Calculating the elements of the resulting matrix: - The element at position (1,1): \[ a \cdot 1 + b \cdot 0 = a \] - The element at position (1,2): \[ a \cdot 0 + b \cdot 1 = b \] - The element at position (2,1): \[ c \cdot 1 + d \cdot 0 = c \] - The element at position (2,2): \[ c \cdot 0 + d \cdot 1 = d \] Thus, we have: \[ B'A' = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] ### Conclusion From Steps 2 and 5, we see that: \[ (AB)' = B'A' \] Hence, we have proved that \((AB)' = B'A'\). ---

To prove that \((AB)' = B'A'\), where \(A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\) (the identity matrix) and \(B = \begin{pmatrix} a & c \\ b & d \end{pmatrix}\), we will follow these steps: ### Step 1: Multiply Matrices A and B First, we need to calculate the product \(AB\). \[ AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3a|20 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3b|15 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

(i) if A=[{:(1,-4),(3,1):}]and b=[{:(1,0,5),(-2,4,3):}], then show that : (AB)'=B'A' (ii) if A=[{:(2,3),(0,1):}]and B=[{:(3,4),(2,1):}], then prove that : (AB)'=B'A'

If A=[{:(0,1),(1,1):}] "and" B=[{:(0,-1),(1,0):}] , then show that (A+B)(A-B)neA^(2)-B^(2)

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

if A=[(1,2),(3,4):}],B=[{:(-1,0),(2,3):}]and C=[{:(1,-1),(0,1):}], then show that : (i) A(B+C)=AB+AC (ii) (A-B)C=AC-BC.

If A=[{:(,2,1),(,0,0):}], B=[{:(,2,3),(,4,1):}] and C=[{:(,1,4),(,0,2):}] then show that (i) A(B+C)=AB+AC (ii) (B-A)C=BC-AC .

if A=[{:(2,-3),(1,4):}],B=[{:(-1,0),(1,2):}], C=[{:(3,1),(1,2):}] , then show that A (BC)=(AB)c.

if A=[{:(0),(1),(2):}]and B=[3" "2" "1], then show that : (AB)'=B'A'

If A=[{:( 0,-x),(x,0):}].B=[{:(0,1),(1,0):}] and x^(2)=-1 , then show that (A+B)^(2)=A^(2)+B^(2) .

If A = [{:(0,4),(1,0):}], B = [{:( -2,0),(3,-2) :} ] and C = [ {:( -1,-2),(2,0) :}] show that : (B- C ) A = BA - CA

If A=[{:(1,2),(-1,3):}]B=[{:(4,0),(1,5):}],C=[{:(2,0),(1,-2):}] a=4 and b=-2, then show that (i) (a+b)B=aB+bB (ii) a(C-A)=aC-aA (iii) (bA)^(T)=bA^(T)