Home
Class 12
MATHS
Expess the matrix A=[{:(2,0,-4),(-3,1,5...

Expess the matrix `A=[{:(2,0,-4),(-3,1,5),(4,-2,3):}]` as a sum of symmetic and skew symmetric matrices.

Text Solution

Verified by Experts

The correct Answer is:
N/a

`A=[{:(2,0,-4),(-3,1,5),(4,-2,3):}]`
`implies A'=[{:(2,0,-4),(-3,1,5),(4,-2,3):}][{:(2,-3,4),(0,1,-2),(-4,5,3):}]`
`A+A'=[{:(2,0,-4),(-3,1,5),(4,-2,3):}]+[{:(2,-3,4),(0,1,-2),(-4,5,3):}]`
`=[{:(4,-3,0),(-3,2,3),(0,3,6):}]`
`implies (1)/(2)(A+A')=[{:(2,-3//2,0),(-3//2,1,3//2),(0,3//2,3):}]`
`and A-A'=[{:(2,0,-4),(-3,1,5),(4,-2,3):}]-[{:(2,-3,4),(0,1,-2),(-4,5,3):}]`
`=[{:(0,3,-8),(-3,0,7),(8,-7,0):}]`
`implies (1)/(2)(A-A')=[{:(0,3//2,-4),(-3//2,0,7//2),(4,-7//2,0):}]`
`Now A=(1)/(2)(A-A')+(1)/(2)(A-A')`
`implies [{:(2,0,-4),(-3,1,5),(4,-2,3):}]`
`=[{:(2,-3//2,0),(-3//2,1,3//2),(0,3//2,3):}]+[{:(0,3//2,-4),(-3//2,0,7//2),(4,-7//2,0):}].`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3a|20 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3b|15 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Express the matrix A={:[(2,-3,4),(-1,4,3),(1,-2,3)]:} as the sum of a symmetric and a skew symmetric matrix

Express the matrix A=[(2,4,-6),(7,3,5),(1,-2,4)] is the sum of a symmetric and skew symmetric matrix.

Express the matrix B= [{:(,2,-2,),(,-1,3,):}] as the sum of a symmetric and a skew symmetric matrix.

Express the matrix A = [{:(4, 2,-1),(3,5,7),(1,-2,1):} ] as the sum of a symmetric and a skew-symmetric matrix.

Express the matrix B=[[2,-2,-4],[-1, 3,4],[ 1,-2,-3]] as the sum of a symmetric and skew symmetric matrix.

Express the matrix A=[[2,4,-6],[ 7,3,5],[ 1,-2, 4]] as the sum of a symmetric and skew symmetric matrix.

Express the matrix A=|(3, 2 ,3),(4,5 ,3),( 2, 4,5)| as the sum of a symmetric and a skew-symmetric matrix.

Express the matrix A=[[3,-2,-4], [3,-2,-5],[-1, 1, 2]] as the sum of a symmetric and skew-symmetric matrix and verify your result.

Express the matrix [{:(2 ,1),(3,4):}] as the sum of a symmetric and a skew-symmetric matrix.

Express the matrix A=[[4, 2,-1], [3 ,5, 7], [1,-2 ,1]] as the sum of a symmetric and a skew-symmetric matrix.