Home
Class 12
MATHS
Construct a matrix [a(ij)](3xx3),where ...

Construct a matrix `[a_(ij)]_(3xx3)`,where `a_(ij)=(i-j)/(i+j).`

Text Solution

AI Generated Solution

The correct Answer is:
To construct the matrix \( A = [a_{ij}]_{3 \times 3} \) where \( a_{ij} = \frac{i - j}{i + j} \), we will follow these steps: ### Step 1: Define the matrix structure We need to create a \( 3 \times 3 \) matrix, which means it will have 3 rows and 3 columns. The elements of the matrix are denoted as \( a_{ij} \), where \( i \) represents the row number and \( j \) represents the column number. ### Step 2: Calculate each element of the matrix We will calculate each element \( a_{ij} \) using the formula \( a_{ij} = \frac{i - j}{i + j} \). #### Row 1: 1. **Calculate \( a_{11} \)**: \[ a_{11} = \frac{1 - 1}{1 + 1} = \frac{0}{2} = 0 \] 2. **Calculate \( a_{12} \)**: \[ a_{12} = \frac{1 - 2}{1 + 2} = \frac{-1}{3} \] 3. **Calculate \( a_{13} \)**: \[ a_{13} = \frac{1 - 3}{1 + 3} = \frac{-2}{4} = -\frac{1}{2} \] #### Row 2: 4. **Calculate \( a_{21} \)**: \[ a_{21} = \frac{2 - 1}{2 + 1} = \frac{1}{3} \] 5. **Calculate \( a_{22} \)**: \[ a_{22} = \frac{2 - 2}{2 + 2} = \frac{0}{4} = 0 \] 6. **Calculate \( a_{23} \)**: \[ a_{23} = \frac{2 - 3}{2 + 3} = \frac{-1}{5} \] #### Row 3: 7. **Calculate \( a_{31} \)**: \[ a_{31} = \frac{3 - 1}{3 + 1} = \frac{2}{4} = \frac{1}{2} \] 8. **Calculate \( a_{32} \)**: \[ a_{32} = \frac{3 - 2}{3 + 2} = \frac{1}{5} \] 9. **Calculate \( a_{33} \)**: \[ a_{33} = \frac{3 - 3}{3 + 3} = \frac{0}{6} = 0 \] ### Step 3: Construct the matrix Now that we have calculated all the elements, we can construct the matrix \( A \): \[ A = \begin{bmatrix} 0 & -\frac{1}{3} & -\frac{1}{2} \\ \frac{1}{3} & 0 & -\frac{1}{5} \\ \frac{1}{2} & \frac{1}{5} & 0 \end{bmatrix} \] ### Summary of the matrix: The final matrix \( A \) is: \[ A = \begin{bmatrix} 0 & -\frac{1}{3} & -\frac{1}{2} \\ \frac{1}{3} & 0 & -\frac{1}{5} \\ \frac{1}{2} & \frac{1}{5} & 0 \end{bmatrix} \]

To construct the matrix \( A = [a_{ij}]_{3 \times 3} \) where \( a_{ij} = \frac{i - j}{i + j} \), we will follow these steps: ### Step 1: Define the matrix structure We need to create a \( 3 \times 3 \) matrix, which means it will have 3 rows and 3 columns. The elements of the matrix are denoted as \( a_{ij} \), where \( i \) represents the row number and \( j \) represents the column number. ### Step 2: Calculate each element of the matrix We will calculate each element \( a_{ij} \) using the formula \( a_{ij} = \frac{i - j}{i + j} \). ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3b|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3c|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Consider a matrix A=[a_(ij)]_(3xx3) , where a_(ij)={{:(i+j","if","ij=even),(i-j","if","ij=odd):} if b_(ij) is cofactor of a_(ij) in matrix A and c_(ij)=sum_(r=1)^(3)a_(ir)b_(jr) , then value of root3(det[c_(ij)]_(3xx3)) is

Consider a matrix A=[a_(ij)[_(3xx3) where, a_(ij)={{:(i+j,ij="even"),(i-j,ij="odd"):} . If b_(ij) is the cafactor of a_(ij) in matrix A and C_(ij)=Sigma_(r=1)^(3)a_(ir)b_(jr) , then det [C_(ij)]_(3xx3) is

Statement-1 (Assertion and Statement- 2 (Reason) Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select the correct choice as given below. Statement - 1 A=[a_(ij)] be a matrix of order 3xx3 where a_(ij) = (i-j)/(i+2j) cannot be expressed as a sum of symmetric and skew-symmetric matrix. Statement-2 Matrix A= [a_(ij)] _(nxxn),a_(ij) = (i-j)/(i+2j) is neither symmetric nor skew-symmetric.

Construct 3xx4 matrix A=[a_(aj)] whose elements are: a_(ij)=i/j

Construct a_(2xx2) matrix, where (i) a_(ij)=((i-2j)^(2))/(2) (ii) a_(ij)=|-2hati+3j|

Construct a 2xx2 matrix, where (i) a_("ij")=((i-2j)^(2))/(2) (ii) a_("ij")=|-2i+3j|

If matrix A=[a_(ij)]_(3xx) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

Show that : The determinant of a matrix A=([a_(i j)])_(5xx5) where a_(i j)+a_(j i)=0 for all i and j is zero.

Construct 3xx4 matrix A=[a_(aj)] whose elements are: a_(ij)=i.j

NAGEEN PRAKASHAN ENGLISH-MATRICES-Exercise 3a
  1. if A=[{:(1,2,3),(-4,5,0):}], then (I) how many columns are in A ? ...

    Text Solution

    |

  2. A=[{:(2,0,-1),(3,2,5),(-1,4,-3),(0,1,7):}],then (i) how many cloumns...

    Text Solution

    |

  3. (i) A matric has 12 elements ,write all possible orders of this ...

    Text Solution

    |

  4. A Matrix has elements a,b,c and d constant the matrix formed with ...

    Text Solution

    |

  5. Construct a 2xx2 matrix A=[a(i j)] whose elements a(i j) are given by:...

    Text Solution

    |

  6. Construct a matrix [a(ij)](3xx3),where a(ij)=(i-j)/(i+j).

    Text Solution

    |

  7. Construct a matrix [a(ij)](3xx3) , where a(ij)=2i-3j.

    Text Solution

    |

  8. if A=[{:(3,-2),(7,1):}]and B=[{:(2,3),(-1,4):}],then find (i) A+B (i...

    Text Solution

    |

  9. if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2...

    Text Solution

    |

  10. if A=[{:(1+i,-2i),(7,3-i):}]and B=[{:(1-i,2i),(-3,3+i):}],then find A+...

    Text Solution

    |

  11. if A=[{:(4,2),(-3,2),(1,3):}]and B=[{:(-1,3),(0,2),(2,-4):}],then find...

    Text Solution

    |

  12. if A=[{:(1,-4,5),(2,1,-3):}]and B=[{:(2,3,-1),(1,2,3):}]then find a m...

    Text Solution

    |

  13. if A=diag [1" "3" "4],B="diag"[-2" "1" "-1],C="Diag"[3" "-1" "-2]then ...

    Text Solution

    |

  14. Simplify the following : cos theta [{:(costheta,-sintheta ),(sinthe...

    Text Solution

    |

  15. (i) if A+B=[{:(3,4),(-1,0):}]and A-B =[{:(1,2),(5,6):}], then find t...

    Text Solution

    |

  16. if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}]...

    Text Solution

    |

  17. Find the values of x and y from each of the following matrix equatio...

    Text Solution

    |

  18. Find the values of x,y,z from the following matrix equation : [{:(x...

    Text Solution

    |

  19. find the values of x, y,z from the following matrix equation : 2[{...

    Text Solution

    |

  20. if A=[{:(2,-3),(4,-1):}]and B=[{:(3,0),(-1,2):}], then find matrix C...

    Text Solution

    |