Home
Class 12
MATHS
if A=[{:(2,-3),(4,-1):}]and B=[{:(3,0),(...

`if A=[{:(2,-3),(4,-1):}]and B=[{:(3,0),(-1,2):}],` then find matrix C such that 2A-B+3c is a unit matrix.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( C \) such that the equation \( 2A - B + 3C = I \) holds true, where \( I \) is the identity matrix. ### Step-by-Step Solution: 1. **Identify the Matrices**: Given: \[ A = \begin{pmatrix} 2 & -3 \\ 4 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 0 \\ -1 & 2 \end{pmatrix} \] 2. **Calculate \( 2A \)**: Multiply each element of matrix \( A \) by 2: \[ 2A = 2 \times \begin{pmatrix} 2 & -3 \\ 4 & -1 \end{pmatrix} = \begin{pmatrix} 4 & -6 \\ 8 & -2 \end{pmatrix} \] 3. **Calculate \( -B \)**: Take the negative of matrix \( B \): \[ -B = -\begin{pmatrix} 3 & 0 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -3 & 0 \\ 1 & -2 \end{pmatrix} \] 4. **Combine \( 2A \) and \( -B \)**: Now, we add \( 2A \) and \( -B \): \[ 2A - B = \begin{pmatrix} 4 & -6 \\ 8 & -2 \end{pmatrix} + \begin{pmatrix} -3 & 0 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 4 - 3 & -6 + 0 \\ 8 + 1 & -2 - 2 \end{pmatrix} = \begin{pmatrix} 1 & -6 \\ 9 & -4 \end{pmatrix} \] 5. **Set Up the Equation**: We have: \[ 2A - B + 3C = I \] Where \( I \) is the identity matrix: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Thus, we can rewrite the equation as: \[ \begin{pmatrix} 1 & -6 \\ 9 & -4 \end{pmatrix} + 3C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] 6. **Isolate \( 3C \)**: Subtract \( \begin{pmatrix} 1 & -6 \\ 9 & -4 \end{pmatrix} \) from both sides: \[ 3C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & -6 \\ 9 & -4 \end{pmatrix} = \begin{pmatrix} 1 - 1 & 0 - (-6) \\ 0 - 9 & 1 - (-4) \end{pmatrix} = \begin{pmatrix} 0 & 6 \\ -9 & 5 \end{pmatrix} \] 7. **Solve for \( C \)**: Divide each element of \( 3C \) by 3: \[ C = \frac{1}{3} \begin{pmatrix} 0 & 6 \\ -9 & 5 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ -3 & \frac{5}{3} \end{pmatrix} \] ### Final Answer: \[ C = \begin{pmatrix} 0 & 2 \\ -3 & \frac{5}{3} \end{pmatrix} \]

To solve the problem, we need to find the matrix \( C \) such that the equation \( 2A - B + 3C = I \) holds true, where \( I \) is the identity matrix. ### Step-by-Step Solution: 1. **Identify the Matrices**: Given: \[ A = \begin{pmatrix} 2 & -3 \\ 4 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 0 \\ -1 & 2 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3b|15 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3c|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exerice|15 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,5),(7,12):}] and B=[{:(9,1),( 7,8):}] then find a matrix C such that 3A+5B+2C is a null matrix.

If A=[{:(1,5),(7,12):}] and B=[{:(9,1),( 7,8):}] then find a matrix C such that 3A+5B+2C is a null matrix.

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

if A=[{:(1,-4,5),(2,1,-3):}]and B=[{:(2,3,-1),(1,2,3):}] then find a matrix C if 2A+3B -4C is a zero matrix.

If A=[{:(4,4),(-2,6):}] and B=[{:(2,1),(3,-2):}] find the matrix D such that 3A -2B + 2D = 0

If A=[{:(1,-3,2),(2," "0,2):}]" and "B=[{:(2,-1,-1),(1," "0,-1):}] , find a matrix C such that (A+B+C) is a zero matrix.

A={:[(1,2),(3,4),(5,6)]:},B={:[(0,1),(-1,2),(-2,1)]:} , then find matrix X such that 2A +3X=5B.

Given A=[{:(,2,-1),(,2,0):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2):}] , Find the matrix X such that A+X=2B+C.

NAGEEN PRAKASHAN ENGLISH-MATRICES-Exercise 3a
  1. if A=[{:(1,2,3),(-4,5,0):}], then (I) how many columns are in A ? ...

    Text Solution

    |

  2. A=[{:(2,0,-1),(3,2,5),(-1,4,-3),(0,1,7):}],then (i) how many cloumns...

    Text Solution

    |

  3. (i) A matric has 12 elements ,write all possible orders of this ...

    Text Solution

    |

  4. A Matrix has elements a,b,c and d constant the matrix formed with ...

    Text Solution

    |

  5. Construct a 2xx2 matrix A=[a(i j)] whose elements a(i j) are given by:...

    Text Solution

    |

  6. Construct a matrix [a(ij)](3xx3),where a(ij)=(i-j)/(i+j).

    Text Solution

    |

  7. Construct a matrix [a(ij)](3xx3) , where a(ij)=2i-3j.

    Text Solution

    |

  8. if A=[{:(3,-2),(7,1):}]and B=[{:(2,3),(-1,4):}],then find (i) A+B (i...

    Text Solution

    |

  9. if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2...

    Text Solution

    |

  10. if A=[{:(1+i,-2i),(7,3-i):}]and B=[{:(1-i,2i),(-3,3+i):}],then find A+...

    Text Solution

    |

  11. if A=[{:(4,2),(-3,2),(1,3):}]and B=[{:(-1,3),(0,2),(2,-4):}],then find...

    Text Solution

    |

  12. if A=[{:(1,-4,5),(2,1,-3):}]and B=[{:(2,3,-1),(1,2,3):}]then find a m...

    Text Solution

    |

  13. if A=diag [1" "3" "4],B="diag"[-2" "1" "-1],C="Diag"[3" "-1" "-2]then ...

    Text Solution

    |

  14. Simplify the following : cos theta [{:(costheta,-sintheta ),(sinthe...

    Text Solution

    |

  15. (i) if A+B=[{:(3,4),(-1,0):}]and A-B =[{:(1,2),(5,6):}], then find t...

    Text Solution

    |

  16. if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}]...

    Text Solution

    |

  17. Find the values of x and y from each of the following matrix equatio...

    Text Solution

    |

  18. Find the values of x,y,z from the following matrix equation : [{:(x...

    Text Solution

    |

  19. find the values of x, y,z from the following matrix equation : 2[{...

    Text Solution

    |

  20. if A=[{:(2,-3),(4,-1):}]and B=[{:(3,0),(-1,2):}], then find matrix C...

    Text Solution

    |