Home
Class 12
MATHS
if A[{:(0,3),(2,1):}],then find A^(2)...

`if A[{:(0,3),(2,1):}],`then find `A^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A^2 \) for the given matrix \( A = \begin{pmatrix} 0 & 3 \\ 2 & 1 \end{pmatrix} \), we will perform matrix multiplication of \( A \) with itself. ### Step-by-step Solution: 1. **Write down the matrix \( A \)**: \[ A = \begin{pmatrix} 0 & 3 \\ 2 & 1 \end{pmatrix} \] 2. **Set up the multiplication \( A^2 = A \times A \)**: \[ A^2 = \begin{pmatrix} 0 & 3 \\ 2 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & 3 \\ 2 & 1 \end{pmatrix} \] 3. **Calculate the elements of the resulting matrix**: - **First row, first column**: \[ (0 \times 0) + (3 \times 2) = 0 + 6 = 6 \] - **First row, second column**: \[ (0 \times 3) + (3 \times 1) = 0 + 3 = 3 \] - **Second row, first column**: \[ (2 \times 0) + (1 \times 2) = 0 + 2 = 2 \] - **Second row, second column**: \[ (2 \times 3) + (1 \times 1) = 6 + 1 = 7 \] 4. **Combine the results into the resulting matrix**: \[ A^2 = \begin{pmatrix} 6 & 3 \\ 2 & 7 \end{pmatrix} \] ### Final Result: Thus, the square of the matrix \( A \) is: \[ A^2 = \begin{pmatrix} 6 & 3 \\ 2 & 7 \end{pmatrix} \]

To find \( A^2 \) for the given matrix \( A = \begin{pmatrix} 0 & 3 \\ 2 & 1 \end{pmatrix} \), we will perform matrix multiplication of \( A \) with itself. ### Step-by-step Solution: 1. **Write down the matrix \( A \)**: \[ A = \begin{pmatrix} 0 & 3 \\ 2 & 1 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3c|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3d|3 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3a|20 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Let A+B+C= [{:(,4,-1),(,0,1):}],4A+2B+C=[{:(,0,-1),(,-3,2):}]and 9A+3B+C=[{:(,0,2),(,2,1):}]"then find A"

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

Given A=[{:(,1,2),(,-2,3):}], B=[{:(,-2,-1),(,1,2):}] and C=[{:(,0,3),(,2,-1):}] , find A+2B-3C.

if A[{:(1 " "3),(-2" " 4):}] and B=[{:(3" "0),(-1" "2):}] , then find 5A - 2B .

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}] . Find A^2+AB+B^2

Given A=[{:(,2,1),(,3,0):}], B=[(1,1),(5,2)] and C=[{:(,-3,-1),(,0,0):}] , find (i) 2A-3B+C (ii) A+2C-B

If A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0),(,0,1):}] ,find A^2-5A+7I .